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ABSTRACT 

Detecting damage in structural systems is often achieved by a statistical comparison of damage-

sensitive characteristics of a structure evaluated on baseline data, against the corresponding 

characteristics obtained using data collected from a potentially defective structure. While several 

vibration-based methods have been proposed and successfully applied to detect damage in both 

mechanical and civil structures over the past years, the general framework describing their common 

properties and unifying the statistical decision about damage has mainly been elaborated in the control 

community. In this paper, we revise this framework in the context of detecting damage in structural 

systems. The statistical properties of three commonly used damage detection methods are recalled, and 

it is shown that their evaluation for damage boils down to a simple statistical distance. The framework 

is adopted to a commercial structural health monitoring software suite and its practical merit is 

illustrated on damage detection of two full-scale highway bridges. 

Keywords: Damage detection, squared Mahalanobis distance, subspace methods, mode tracking, 

control chart, Structural Health Monitoring, Operational Modal Analysis 

1. INTRODUCTION 

Vibration-based damage detection refers to detecting damage through changes in a set of features 

extracted from the vibration signals collected from structural health monitoring (SHM) systems. Over 

the past decade, it became an effective methodology in triggering on-demand inspections after 

damaging events in large-scale civil and mechanical structures, e.g., wind turbines [1,2], offshore 

structures [3,4], and bridges [5,6]. It remains the sole aspect of the SHM triad, i.e., damage detection, 

localization, and quantification, that has been implemented in commercial software such as ARTeMIS 

Modal Pro [7] and PULSE™ Operational Modal Analysis [8]. 
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In the field of fault diagnosis of mechanical systems, myriads of different vibration-based damage 

detection methods exist; see [9] for a review of early developments. Commercially available methods 

often use the modal approach, which presumes that the damage is manifested through a change in the 

modal parameters, i.e., the natural frequencies, damping ratios and mode shapes. The modal parameters 

are typically identified from measured data and compared to baseline values using statistical distance 

measures. However, some field work questions the use of the modal parameters as damage-sensitive 

features, arguing that they are not sensitive enough to identify local faults [1,2], especially if the 

structure is only excited by low-frequency inputs. One bypass to the modal framework employed in the 

commercial software, is to use the statistical fault detection and isolation methods [10,11], where the 

damage-sensitive features of the system are derived directly from measured data and comprise, e.g., 

angles between dynamic signal spaces, and are evaluated for damage in statistical hypothesis tests. 

While efficient in detecting damage, the practical use and interpretation of the latter methodology is 

often hindered by its complex mathematical formulation. 

The goal of this paper is to illustrate that the current commercial practice for the vibration-based damage 

detection boils down to a simple statistical distance obtained from a residual evaluated between some 

baseline (reference) features of the system and the features from the currently tested data. In this context, 

three damage detection residuals are investigated, namely, the classic subspace-based residual [12], the 

robust subspace-based residual [10], and the modal parameter-based residual [13]. Each metric is 

calculated based on vibration data collected during normal operating conditions, and the damage is 

denoted as deviations of the distance measure from the reference state. The considered methods are 

implemented in the modal analysis and structural health monitoring software packages ARTeMIS 

Modal and PULSE Operational Modal Analysis, in which their joint features are concluded in a control 

chart to enhance the resolution of the damage detection. Methods are evaluated based on the ambient 

vibration signals from two benchmark structures, that is, the Z24 bridge in Switzerland and the S101 

bridge in Austria. The results reveal that the performance of the damage detection methods is similar 

and the fusion of the damage indicators in the control chart provides the most accurate view on the 

progressively damaged systems. The paper is organized as follows: Section 2 recaps the statistical tests 

for damage detection, Section 3 contains two cases studies and Section 4 discusses the results.  

2. METHODOLOGY 

In this section, the background on output-only vibration analysis of mechanical systems is recalled, the 

definition of three different damage detection residuals is outlined and the general framework for the 

statistical decision-making about damage is stated. 

2.1. Background 

A fundamental step in damage detection is the evaluation of the dynamic features of the system from 

monitoring data, so that their changes can be related to the occurrence of damage. To this end, many 

classical features used for damage detection originate from system identification and comprise, e.g., 

subspace characteristics of data matrices, or modal parameters, where both can be obtained from the 

response measurements, e.g., accelerations, velocities, displacements, inclinations, or strains.  

 

Consider N acceleration measurements 𝑦 = [𝑦1 …𝑦𝑁]𝑇 ∈ R𝑟x𝑁 collected using 𝑟 sensors sampling the 

dynamic response of the monitored linear time-invariant (LTI) dynamic system with a sampling 

frequency 𝑓𝑠. The covariance matrix of the output measurements 𝑅𝑖 = Ε(𝑦𝑘+𝑖yk
T) ∈ R𝑟𝑥𝑟 can be 

structured in the block-Hankel matrix 𝐻 ∈ R(𝑝+1)𝑟 𝑥 𝑞𝑟 as follows: 
 

 

𝐻 =

[
 
 
 

𝑅1 𝑅2

𝑅2 𝑅3

⋯
…

𝑅𝑞

𝑅𝑞+1

⋮ ⋮ ⋱ ⋮
𝑅𝑝+1 𝑅𝑝+2 … 𝑅𝑝+𝑞]

 
 
 

 , (1) 
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where 𝑝 and 𝑞 = 𝑝 + 1 are the parameters that denote the memory of the system. The factorization of 

𝐻 to some low-rank matrices fully describing the dynamics of the underlying LTI mechanical system 

is the cornerstone for obtaining the damage-sensitive features in the SHM methods considered in this 

paper. Assume that the order of the system n=2m is known, where m is the number of modal parameters 

observed in the considered frequency band. The singular value decomposition (SVD) of 𝐻 writes: 
 

 
𝐻 = [𝑈1 𝑈2] [

𝐷1 0
0 𝐷2

] [
𝑉1

𝑇

𝑉2
𝑇], (2) 

 

 

where 𝑈1 ∈ R(𝑝+1)𝑟 𝑥 𝑛and 𝑉1 ∈ R𝑞𝑟 𝑥 𝑛 are called the image and the co-image of a matrix, respectively,  

and correspond to a collection of n left and right singular vectors related to n singular values 𝐷1 ∈

R𝑛 𝑥 𝑛. The matrices 𝑈2 ∈ R(𝑝+1)𝑟 𝑥 (𝑝+1)𝑟−𝑛 and 𝑉2 ∈ R𝑞𝑟 𝑥 𝑞𝑟−𝑛 are called the left and right nullspace 

of a matrix, respectively. They contain the left and right singular vectors that correspond to the singular 

values in 𝐷2 ∈ R(𝑝+1)𝑟−𝑛 𝑥 𝑞𝑟−𝑛 which approximate zero. Their use in the context of the considered 

damage detection methodology is elaborated in Sections 2.2.1 - 2.2.3. 

2.2. Damage detection residuals 

Let 𝜁 denote a damage detection residual obtained from some damage-sensitive features extracted from 

the measurement data in the reference and in the currently tested state and let 𝛴𝜁 be its asymptotic 

covariance matrix. To compare the measurements from the healthy and the tested states, the residual is 

expressed to follow a Gaussian distribution, whose mean value is zero if the features of the currently 

tested system statistically correspond to the baseline features and is different from zero otherwise. The 

definition of the residual depends on the chosen damage detection method. A brief description of the 

damage detection residuals used in this paper is enclosed below. For brevity, only the definition of 

residuals is outlined and not their statistical characteristics, e.g., covariance computation. Regarding 

this, the interested reader is encouraged to refer to the references enclosed in the respective sections. 

2.2.1. Classic subspace-based residual 

The classic subspace-based damage detection residual is defined as a product of a Hankel matrix 

evaluated from the test data 𝐻test and the left nullspace of the Hankel matrix obtained from the baseline 

data 𝑈2
ref [12]. The resultant residual can be written as: 

 

 𝜁 = √𝑁 𝑈2
𝑟𝑒𝑓𝑇

𝐻𝑡𝑒𝑠𝑡. (3) 
 

 

After the left nullspace property, i.e.,  𝑈2
ref𝑇𝐻test  → 0, when the test data statistically corresponds to 

the baseline data, the mean value of the residual (3) is zero when the currently tested data set is classified 

healthy, and it is different from zero when the currently tested data is collected from a damaged 

structure.   

2.2.2. Robust subspace-based residual 

The robust subspace-based residual is defined from a product of images of a Hankel matrix evaluated 

from the test data 𝑈test = 𝑈1
test(𝑈1

test)𝑇 and the left nullspace of the Hankel matrix obtained from the 

baseline data 𝑈2
ref [10]. The resultant residual can be written as: 

 

 𝜁 = √𝑁 𝑈2
ref𝑇𝑈test. (4) 

 

 

Like the classic residual, the mean value of the robust residual is zero when the features obtained from 

the currently tested data corresponds to the baseline features and it is different from zero otherwise. The 

benefit of using the image product 𝑈test in (4) compared to 𝐻test in (3) is that 𝑈test is not heavily 

affected by the noise properties of the singular values and the right singular vectors; a clear drawback 

is its additional computational complexity related to the computation of the covariance matrix. 
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2.2.3. Modal parameter-based residual 

The modal parameter-based residual is defined as the difference between currently estimated modal 

parameters and their reference values obtained from data in a baseline state [13]. Let 𝑥ref and 𝑥test 

contain a stacked and vectorized collection of the modal parameter estimates, e.g., the natural 

frequencies and the mode shapes, obtained from the baseline and the test data using SSI. The modal 

parameter-based residual is defined as: 
 

 𝜁 =  √𝑁(𝑥ref − 𝑥test), (5) 
 

 

The expected value of the residual is zero when the modal parameter estimates obtained from the 

currently tested data and the baseline modal parameter estimates converge to the same expected value. 

Otherwise, the expected value of the residual (5) is different from zero, which signifies the occurrence 

of damage. The computation of the consistent estimates of the joint covariance of the natural frequencies 

and the mode shapes can be found, e.g., in [14, 15], and case studies confirming the Gaussian 

characteristics of modal parameter estimates can be found, e.g., in [16]. 

2.3. General framework for damage detection 

Based on the features extracted from the measurement data in the reference and in the currently tested 

state, the goal of damage detection is to decide whether there is a significant change between the two 

states, i.e., whether the expected value of the residual is statistically zero, or not. This decision can be 

achieved through statistical hypothesis tests, e.g., with Generalized Likelihood Ratio (GLR) test [11], 

or with some statistical distance measures, e.g., squared Mahalanobis distance [17]. For the residuals 

considered in this work, the likelihood ratio statistics boils down to the squared Mahalanobis distance, 

which is used for damage detection in the remainder of this paper. 

The squared Mahalanobis distance describes a squared distance between a point and a distribution. The 

distance is zero if the investigated point is at the mean of the reference distribution, and it is not zero 

otherwise. As such, the metric: 
 

 𝑑 = 𝜁𝑇𝛴𝜁
−1𝜁, (6) 

 

 

can be considered as a dissimilarity measure. When the residual follows an asymptotically Gaussian 

distribution with zero mean: 
 

 𝜁 → N(0, 𝛴𝜁), (7) 
 

 

the currently tested data set is classified healthy, since the expected value of the dissimilarity between 

the baseline features and the tested features is null, and then it is well-known that d follows a central 𝜒2 

distribution [17]. When the system has undergone a change and the expected value of the residual is not 

zero but 𝛿, then 
 

 𝜁 → N(𝛿, 𝛴𝜁), (8) 
 

the currently tested data set is classified as damaged, and d follows a noncentral 𝜒2 distribution [17]. 

Residuals (3 - 5) satisfy properties (7 - 8) and consequently can be used for statistical damage diagnosis 

with the squared Mahalanobis distance (6). To decide about the damage, the value of the distance 

statistics is compared to a quantile of the distribution of the test derived from the baseline data. This 

quantile is evaluated for some confidence level 𝛼, where 1- 𝛼 denotes the statistical significance level, 

i.e., the probability of false alarms to occur. The general premise of this statistical framework is 

illustrated in Figure 1.  

To simplify the decision about damage, the squared Mahalanobis distance statistics obtained from 

different damage detection residuals are combined in a Hotelling T2 control chart [6]. The control chart 

statistics are computed from the sample mean and the sample covariance obtained from the test statistics 

of each damage detection residual.  
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Figure 1. Decision framework for damage detection 

3. CASE STUDIES 

Below, two case studies on highway bridges are presented. 

3.1. Z24 bridge 

The Z24 bridge is a benchmark for many studies involving system identification and damage diagnosis 

[5]. Before its demolition in 1998, a progressive damage campaign was carried out and consisted of a 

series of ambient and forced vibration tests conducted while inducing different kinds of damage on the 

bridge. The vibration tests were conducted with 28 moving and 5 fixed sensors measuring vertical, 

transverse, and lateral accelerations of the bridge. For this study, only the measurements from 5 fixed 

sensors are analysed. The data acquisition was performed with a sampling frequency of 100 Hz and the 

length of each measurement was 655 seconds. A total number of 54 data sets were analysed, from which 

the first 18 measurements were under healthy conditions. Among the first 18 healthy data sets, 6 data 

sets were selected for the reference state computation. For data sets 19 to 36, measurements were 

collected after lowering one of the bridge piers by 20 mm. Data sets 37 to 54 were obtained after 

lowering the same pier by another 20 mm. The view on the bridge with positions and directions of the 

sensors is shown in Figure 2. 

 

 
 

Figure 2. Front and top views of the Z24 bridge (left). Geometry with 5 fixed sensors (right) 

 

The first 9 modes obtained with the Stochastic Subspace Identification – Extended Unweighted 

Principal Components (SSI–UPCX) method and tracked across the 54 data sets are shown in Figure 3. 
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Figure 3. Modal parameters of the Z24 bridge tracked across the 54 data sets. Natural frequencies shown 

 

The mean values of the corresponding natural frequencies and the mode shape estimates obtained over 

the first 6 data sets are used to establish a baseline (reference) for the modal parameter-based damage 

detection (5). The remaining 48 data sets are used for damage testing with the squared Mahalanobis 

distance (6). The resultant damage indicators are presented in Figure 4. Three decision zones are shown. 

The ’safe zone‘ is shown with green colour and indicates that the corresponding test values lie within 

the 95% quantile of the reference distribution statistics, the ’critical zone‘ shown with yellow colour 

indicates that the test values lie between the 95% quantile and the 99% quantile of the reference 

distribution, and the ’unsafe zone‘ shown with red colour indicates that the corresponding test values 

exceed the 99% quantile of the reference distribution. 

Figure 4 illustrates that one test value corresponding to data collected from the bridge in an undamaged 

state has exceeded the 99% quantile threshold, falsely alarming damage. This is most likely caused by 

a missing tracked mode of the fourth and the seventh modes. Overall, however, the damage, after its 

inception, is well detected. 

 

 
 

Figure 4. Damage detection with modal parameters (5) using Z24 bridge data 

 

The results of damage diagnosis with the classic subspace residual are studied next. The first 6 data sets 

are used to obtain the baseline features. The output covariance Hankel matrix of both the reference and 

the test data set is obtained with 𝑝 = 7 and the reference left nullspace is estimated with 𝑛 = 20. The 
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covariance of the residual is obtained after the first-order perturbation analysis of the residual, and the 

sample covariance of the Hankel matrix is computed by splitting data to 200 independent segments. 

The resultant damage indicators are illustrated in Figure 5. Despite few healthy data sets are classified 

to critical regions no false alarms occur, and all damage scenarios are detected.  

 

 
 

Figure 5. Damage detection with the classic residual (6) using Z24 bridge data 

 

Lastly, the performance of the robust damage detection residual is studied. In this context, the 

parameters to obtain the baseline and the test features remain the same as in the classic subspace 

residual. The resultant damage indicators are illustrated in Figure 6. One can observe that while the 

damage indicators corresponding to the healthy data are classified to the safe region, damage in data 

sets 21 and 22 is undetected.  

 

 
 

Figure 6. Damage detection with the robust residual (7) using Z24 bridge data 

 

As the studied residuals have different statistical properties, the results also differ. To simplify the 

decision making about damage and to enhance the performance of the damage detection, the indicators 

from all the residuals are joined in a Hotelling T2 control chart, which is illustrated in Figure 7. The 

fusion of the methods in a control chart results in an increased resolution of the damage detection, 

allowing to distinguish different types of damage, while retaining no false alarms in the healthy state.   
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Figure 7. Fusion of damage indicators in a Hotelling T2 control chart, Z24 bridge 

 

3.2. S101 bridge 

The S101 was a prestressed concrete bridge located in Reibersdorf, Austria. With the main span of 32 

m, side spans of 12 m, and a width of 6.6 m, it crossed the national highway A1 Westautobahn. Built 

in 1960, it had to be demolished due to structural problems and to allow space for additional lanes on 

the highway underneath. That created an opportunity for conducting progressive structural damage 

tests. The bridge was artificially damaged and monitored within the Integrated European Industrial Risk 

Reduction System research project [18]. 

The measurement campaign was conducted by Vienna Consulting Engineers ZT GmbH (VCE) [19] 

and the University of Tokyo. The purpose of the campaign was to demonstrate the impact of scientific 

insight and findings with regards to the rehabilitation measures and cost planning of the transportation 

infrastructure. Acceleration responses were recorded using 15 triaxial sensors mounted on the bridge 

deck. The bridge was monitored continuously from the 10th to the 13th of December 2008. A sampling 

frequency of 500 Hz was used and a total of 714 data sets with 165k samples in each were acquired. 

The bridge was closed for any traffic during the progressive damage testing. As a result, the main source 

of ambient excitation was wind and the vibrations from traffic on the highway beneath the bridge. The 

structural damages introduced in the bridge were of several types and locations. Two major damage 

scenarios can be distinguished, as outlined in Table 1. 

 
Table 1. Damage scenarios during the progressive damage test of the S101 bridge 

 

Case 1  Damages Sets Case 2 Damages Sets 

A First cut through the left pier  5 G Inserting steel plates 45 

B Second cut through the left pier 15 H 2nd tendon cut 178 

C Settlement of the left pier (1st) – 1cm  10 I 2nd tendon cut 178 

D Settlement of the left pier (2nd) – 2cm  21 J 3rd tendon cut 23 

E Settlement of the left pier (3rd) – 3cm 9 K 
4th tendon partly 
intersected 

6 

F Lifting the left pier – 6mm  186    

 



 

 

UNRESTRICTED 

 

 
Figure 8. The S101 bridge. Locations of introduced damage are marked in the figure around the north side pier 

(www.vce.at/iris/) 

 
The first 4 modes obtained with the SSI–UPCX method and tracked across the 681 data sets are shown 

in Figure 9. 

 

 
 

Figure 9. Modal parameters of the S101 bridge tracked across the 681 data sets. Natural frequencies shown 

 

 

 
 

Figure 10. Damage detection with modal parameters (5) using S101 bridge data 

 

http://www.vce.at/iris/
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The mean values of the corresponding natural frequencies and the mode shape estimates obtained over 

the first 60 data sets are used to establish a baseline (reference) for the modal parameter-based damage 

detection (5). The remaining 621 data sets are used for damage testing with the squared Mahalanobis 

distance (6). The resultant damage indicators are presented in Figure 10. There are a few false alarms 

in the reference part of the data sets, but there is a significant increase in the damage indicators when 

damage scenario A is introduced. The damage indicators stay high throughout the remaining data sets. 

The results of damage diagnosis with the classic subspace residual are studied next. The first 100 data 

sets are used to obtain the baseline features. The output covariance Hankel matrix of both the reference 

and the test data set is obtained with 𝑝 = 8 and the reference left nullspace is estimated with 𝑛 = 30. 

The covariance of the residual is obtained after the first-order perturbation analysis of the residual, and 

the sample covariance of the Hankel matrix is computed by splitting data to 200 independent segments. 

The resultant damage indicators are illustrated in Figure 11. Despite several false alarms in the reference 

state, the classic subspace damage indicator reacts heavily when damage is introduced. The results 

exceed the 99% quantile of the reference distribution for most of the damage cases. However, a small 

drop between damage cases I and J can be observed. This might be caused by insufficient excitation of 

the bridge at night.  

 

 
 

Figure 11. Damage detection with the classic residual (6) using S101 bridge data 

 

The modal parameter-based and classic subspace damage indicators are fused in the control chart shown 

in Figure 12. The control chart compensates for the drawbacks of each of the two individual damage 

indicators. There are few false alarms in the reference data sets. However, there is a clear reaction to 

the damage introduced. 
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Figure 12. Fusion of damage indicators in a Hotelling T2 control chart, S101 bridge 

 

4. DISCUSSION 

The case studies clearly reason for a parallel analysis of multiple damage indicators. Each indicator has 

its shortcomings, directly related to the statistical properties of the underlying damage diagnosis residual 

[20]. Consequently, the choice of the method for an SHM system, before the actual analysis is 

performed, is not trivial. To enhance the reliability of the damage detection and simplify the decision 

about damage, the fusion of damage indicators in a control chart is beneficial, as demonstrated by the 

case studies. Additionally, some practical strategies to interpret false alarms can be developed, e.g., by 

using the fact that false alarms typically do not happen in consecutive data sets. Hence, an alert can be 

delayed until the next data set is processed, and the alarm occurs again. Furthermore, signal processing 

techniques exist to remove varying disturbances from the system dynamics by denoising Hankel 

matrices [21]. 

5. CONCLUSION 

This paper presents a comparative study on three different damage detection residuals, i.e. the classic 

subspace-based residual, the robust subspace-based residual, and the modal parameter-based residual. 

To determine the health of structural systems, all three residuals are evaluated in a simple statistical 

test, which boils down to the squared Mahalanobis distance. The performance of each damage detection 

residual is compared using data from the Z24 and S101 highway bridges, where the capability of each 

method to detect the damages and to be ready to deploy in online SHM systems is shown. The fusion 

of the methods in a Hotelling T2 control chart resulted in the most effective detection of damage. In 

addition, it was discussed how to interpret and avoid false alarms in SHM systems. 
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