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Abstract 

Damage detection consists of monitoring the deviations of a current system from its reference state, characterized by some nominal 

property repeatable for every healthy state. Preferably, the damage detection is performed directly on vibration data, hereby 

avoiding modal identification of the structure. The practical aspect of using only the output measurements cause difficulties because 

of variations in ambient excitation due to variability in the environmental conditions, like sea, wind, and temperature. In this paper, 

a new Mahalanobis distance-based damage detection method is studied and compared to the well-known subspace-based damage 

detection algorithm in the context of two large case studies. Both methods are implemented in the modal analysis and structural 

health monitoring software ARTeMIS, in which the joint features of the methods are concluded in a control chart in an attempt to 

enhance the resolution of the damage detection. The damage indicators from both methods are evaluated based on the ambient 

vibration signals from numerical simulations on a novel offshore support structure and an experimental campaign with a full scale 

bridge. The results reveal that the performance of the two damage detection methods is similar, hereby implying merit of the new 

Mahalanobis distance-based approach, as it is less computational complex. The fusion of the damage indicators in the control chart 

provides the most accurate view on the progressively damaged systems. 
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1. Introduction 

Online vibration-based damage detection methods are increasingly popular for detecting damages during operational 

time of large civil and mechanical structures. In particular, for complex public structures such as bridges [1], where 

human safety is a priority, or for structures difficult to access and inspect, like wind turbine blades [2] or offshore 

foundations [3]. For given cases, amongst many other examples, the vibration-based damage detection relies on 

identification of the damage-induced deviations in the damage-sensitive quantities of the collected response signals.  

 

A frequent practice is to use a modal approach, which presumes that the damages are fully reflected by the vibrational 

characteristics (natural frequencies, mode shapes or damping ratios) identified from the data and thereafter compared 

between the healthy and current states. However, field work questions the direct use of the modal parameters, arguing 

that the modal data itself is not sensitive enough to detect the local faults [4], especially when, in practice, the structure 

is excited by low-frequency inputs. One bypass to the modal framework is to use the statistical methods, where 

characteristic damage-sensitive quantities are derived directly from the data and evaluated for damages in a hypothesis 

tests [6].  

 

This paper contributes to the vibration-based statistical damage detection methods with a revision of a new 

Mahalanobis distance (MD)-based method presented by the authors in [12]. The distance metric is calculated on the 

output vibration data processed in the framework similar to the subspace-based methods [7], hereby providing an 

approach that is robust towards changes in the excitation covariance. As such, damage is detected as deviations of the 

distance from the reference test state. The proposed approach is tested on numerical simulations with a novel offshore 

support structure, namely, a Mono Bucket (MB) foundation, and an experimental full scale case of a progressively 

damaged highway bridge in Austria. The performance of the MD-based damage detection approach is compared to 

the well-known classic and robust subspace-based techniques [6,10], which are implemented in ARTeMIS [11]. The 

resolution of the damage detection in both numerical and full scale cases is enhanced by a combination of both methods 

in a Hotelling control chart [8].    

 

The structure of the paper is as follows. The basic principles of the MD-based damage detection approach are presented 

in Section 2. Both the comparison and joint performance of the methods, with a description of the numerical and full 

scale cases, are presented in Section 3. The final results are concluded in Section 4. 

2. Mahalanobis distance-based damage detection 

The square MD between the observations in the data vector 𝐱𝑖 and a reference, baseline model with the sample mean 

𝛍 and the covariance matrix 𝚺 is defined as  

 𝑀𝐷𝑖 = (𝐱𝑖 − 𝛍)𝑇𝚺−1(𝐱𝑖 − 𝛍).  (1) 

In this paper, the MD is calculated on empirical block-Hankel matrices based on output correlations and used directly 

as a damage indicator, see Eq. 2. The squared MD featured with the Hankel matrices of output correlations is defined 

as 

 
𝑀𝐷𝑖 = 𝑣𝑒𝑐(�̂�𝑝+1,𝑞 − 𝛍(�̂�𝑝+1,𝑞

𝑅𝑒𝑓
))

𝑇
(𝚺

�̂�𝑝+1,𝑞
𝑅𝑒𝑓 )

−1

𝑣𝑒𝑐(�̂�𝑝+1,𝑞 − 𝛍(�̂�𝑝+1,𝑞
𝑅𝑒𝑓

)).  (2) 

where 𝛍(�̂�𝑝+1,𝑞
𝑅𝑒𝑓

) is a mean value of a baseline model and �̂�p+1,q
Ref  is a reference output block Hankel matrix determined 

using 𝑚 merged reference data sets. The proposed metric is robust towards the variations of the excitation covariance 

and can, therefore, be employed for operational measurements. The formulation of the block-Hankel matrices is 

adapted from the subspace-based methods. 

Consider the system outputs 𝐲𝐤 = [𝑦𝑘
1 𝑦𝑘

2 … 𝑦𝑘
𝑟]𝑇 ∈ 𝑅𝑟  ,where 𝑟 is the number of sensors, and a subset of 𝑟0 sensors 

denotes the number of reference channels. Each entry (𝑠, 𝑡) of the output correlation matrices 𝐂i ∈ 𝑅𝑟𝑥𝑟0  yields 𝑪𝑖
𝑠,𝑡 =

Ε(𝒚𝑘+𝑖
𝑠 𝐲k

t𝐓)/𝝈𝑠𝝈𝑡  , where 𝑠 = 1,… , 𝑟 , 𝑡  comprises all reference channels, and 𝝈𝑠  with 𝝈𝑡 denote the standard 

deviation of the signals from sensors 𝑠 and 𝑡, respectively. The correlations can be structured in the block-Hankel 
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matrix 
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= Hank(𝐂i). (3) 

 

𝐇𝑝+1,𝑞 ∈ 𝑅(𝑝+1)𝑟 𝑥 𝑞𝑟0  where 𝑝  and 𝑞  are parameters such 𝑞 = 𝑝 + 1. Based on the assumption that the damage 

introduces a change in the distribution of  �̂�p+1,q
Ref  , it is identified 𝑇𝑚 lengths outside the baseline state as an outlier 

[9], so 

  𝑀𝐷𝑖 ≤ 𝑇𝑚 → ℎ𝑒𝑎𝑙𝑡ℎ𝑦
𝑀𝐷𝑖 > 𝑇𝑚 → 𝑑𝑎𝑚𝑎𝑔𝑒𝑑

. (4) 

Here, 𝑚 designate the reference, healthy data sets and 𝑖 denotes the tested state. The threshold 𝑇𝑚 is defined as one 

standard deviation above the mean value of the reference state.  

3. Numerical simulations 

The numerical tests are conducted on a finite element (FE) model of an MB foundation – a new concept for a support 

structure for offshore wind turbines [5]. The MB structure consists of a circular steel shell forming a skirt, which is 

installed inside the seabed and closed with a circular plate that creates air-tight conditions inside the so-called bucket. 

The air-tight feature allows to install the foundation with suction pumps, that is silent and fast to achieve. The shaft is 

connected to the foundation by steel profiles called webs, which transfer the operational load to the skirt. The welded 

shaft-web connection is prone to high stresses and carry a significant fatigue load, thus it is considered as a potential 

damage location. 

 

Fig. 1 MB foundation for a mobile met. mast at Horns Rev 2 (2009) (left). FE-model of the MB for numerical simulations (right). Bi-axial x-y 

accelerometers are illustrated by yellow dots.  

The structural responses are simulated by use of the FE model of the structure with a bucket diameter of 14 m and a 

32 m long shaft. The translational and rotational boundary conditions are constrained to zero on the skirt plates. In 

total, the FE model contains 8589 first-order shell elements, 8414 nodes and, consequently, 50484 degrees of freedom 

(DOF). Output accelerations are simulated using white noise input of variance taken randomly from a normally 

distributed vector in between [1 100], acting on the nodes on top of the shaft. A single generation of the response is 

recorded for 250 s with a sampling frequency of 40 Hz in 5 nodes by bi-axial sensors, hereby yielding 10 acceleration 

channels. In total, the ambient vibrations are simulated for 45000 s, which results in 180 data sets; 50 sets from the 
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healthy state and 130 sets representing 13 damaged scenarios. To challenge the performance of the damage detection 

methods, 1% of a Gaussian white noise is added to the response signals.  

The damages are simulated as a progressive thickness (t) reduction of the elements in the shaft-web connection, by, 

respectively, 1%, 5%, 15%, 40% and 85%. Each element is a square of 100mm x 100mm. The damage test scenario 

along with a corresponding data set are described in Table 1. 

Table 1. Damage scenarios during the simulations on the MB model. 

Annotation  Description Sets Annotation Description Sets 

A Healthy state 50 H 
t of 4 FE in ALL connections reduced by 

15% 
10 

B t of 4 FE in A reduced by 1% 10 I t of 4 FE in A reduced by 40% 10 

C t of 4 FE in A reduced by 5% 10 J t of 4 FE in A and B reduced by 40% 10 

D t of 4 FE in A and B reduced by 5%  10 K 
t of 4 FE in ALL connections reduced by 

40% 
10 

E 
t of 4 FE in ALL connections reduced 

by 5% 
10 L t of 4 FE in A reduced by 85% 10 

F t of 4 FE in A reduced by 15% 10 M t of 4 FE in A and B reduced by 85% 10 

G t of 4 FE in A and B reduced by 15% 10 N t of 4 FE in connections reduced by 85% 10 

3.1. Damage detection results 

The reference state is created using the first 30 data sets from the healthy state. All damage detection tests are 

conducted with the parameter setting 𝑞 = 𝑝 + 1 = 5. The damage indicators for the numerical test cases along with 

the fusion of subspace-based and MD-based methods are illustrated in Fig. 2.  

 

Fig. 2 MD-based damage indicators (upper left). Classic subspace-based damage indicators (upper right). Robust subspace-based damage 

indicators (lower left). Fusion of the subspace-based and MD-based damage indicators in the Hoteling control chart (lower right). 
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All three methods detect the cases with 40 % and 85 % reduction of thickness, whereas the 15 % reduction is only 

detected by the MD-based and the robust subspace-based methods. The first phase with 5 % reduction is detected by 

the MD-based algorithm, however, along with several false alarms triggered in the healthy state. Only the fusion of 

all the detection methods in the Hotelling control chart is capable of identifying each damage scenario and does not 

outline damages in the healthy data.  

4. S101 bridge 

The instrumentation and employment of a structural health monitoring system on the S101 bridge was described in 

detail in [1]. This section contains a brief review of the monitoring setup, along with a description of the damages 

introduced to the bridge and a comparison of the results obtained from the subspace-based methods, similar to the 

findings in [1], and the MD-based scheme. 

The S101 was a prestressed concrete bridge located in Reibersdorf, Austria. With the main span of 32 m, side spans 

of 12 m, and a width of 6.6 m, it crossed the national highway A1 Westautobahn. Built in 1960, it had to be demolished 

due to structural problems and to allow space for additional lanes on the highway underneath. That created an 

opportunity for conducting  progressive structural damage tests.  

The bridge was artificially damaged and monitored within the “Integrated European Industrial Risk Reduction System 

(IRIS)“ research project. The measurement campaign was conducted by VCE and the University of Tokyo. The 

purpose of the campaign was to demonstrate the impact of scientific insight and findings with regards to the 

rehabilitation measures and cost planning of the transportation infrastructure.  

Acceleration responses were recorded using 15 tri-axial sensors mounted on the bridge deck. The bridge was 

monitored continuously from 10-13 December 2008, with a sampling frequency of 500 Hz, hence resulting in a total 

of 714 data sets (with 165000 samples in each). Naturally, the bridge was closed for any traffic during the progressive 

damage tests. As a result, the main source of ambient excitation was wind together with vibrations from the highway 

beneath the bridge. The structural damages introduced in the bridge were of several types and locations. Two major 

damage scenarios can be distinguished, as outlined in Table 2. 

Table 2. Damage scenarios during the progressive damage test of the S101 bridge. 

Damage 

case 1  
Damages Sets 

Damage 

case 2 
Damages Sets 

B First cut through the left pier  5 I 
Exposing the tensioning cables, 

1st tendon cut 
20 

C Second cut through the left pier 15 J 2nd tendon cut 178 

D Settlement of the left pier (1st) – 1cm  10 K 3rd tendon cut 23 

E Settlement of the left pier (2nd) – 2cm  21 L 4th tendon partly intersected 6 

F Settlement of the left pier (3rd) (final settlement) – 3cm 9    

G Lifting the left pier - +6mm above the 0.00 186    

H Strengthening the left pier with a steel plate 45    

4.1. Damage detection results 

The reference state is created using the first 100 healthy data sets. Output acceleration signals are decimated to 12.5 

Hz and all damage detection tests are conducted with the parameter setting 𝑞 = 𝑝 + 1 = 16 . To reduce the 

computational time, 4 reference, or so-called projection, channels are chosen based on [1]. In total, 680 out of 714 

data sets were investigated for damages. The comparison of the damage indicators for the robust subspace-based and 

MD-based methods is illustrated in Fig. 3.  

 

The results in Fig. 3 show that the MD-based method identifies the healthy state up to 150 data set, which agrees with 

the structural testing scheme, and classifies the damages to the respective periods seen in Table 2. When comparing 
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the results from both methods, the MD-based damage indicators are more sensitive to the local, less significant, 

damages- I, J, K, whereas the major damage events- C, D, E, F are less pronounced, yet identified.  

 

Fig. 3 MD-based damage indicators (left). Robust subspace-based damage indicators (right).  

5. Discussion and conclusions 

This paper presents a revision of a recently developed MD-based damage detection method, whose performance has 

been compared to well-established subspace-based damage detection approaches. The methods were tested on the 

basis of an FE simulation model of a novel offshore support structure and an experimental campaign with a full-scale 

artificially damaged bridge.  

 

Despite the changes in the variance of the ambient excitation, tested methods have proven to be effective in detecting 

the damages in both the simulations and the full scale experimental cases. The performance of the new MD-based 

damage detection appears similar to the robust subspace-based scheme in both cases. Both the subspace-based and 

MD-based algorithms successfully identify the initial point of each artificially introduced damage scenario, proving 

the capabilities of both methods to detect the damages and to be ready to deploy in online health monitoring systems. 

 

Future work will focus on the use of empirical Hankel matrices based on different statistical transformations of the 

output data as damage sensitive quantities. The fusion of the methods enhanced the performance of damage detection, 

hence research on this subject will also be expanded.  
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