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Uncertainty Quantification for Modal Parameters from Stochastic Subspace
Identification on Multi-Setup MeasurementsI

Michael Döhler∗, Xuan-Binh Lam, Laurent Mevel

Inria, Centre Rennes - Bretagne Atlantique, 35042 Rennes, France

Abstract

In operational modal analysis, the modal parameters (natural frequencies, damping ratios and mode shapes), ob-
tained with stochastic subspace identification from ambient vibration measurements of structures, are subject to sta-
tistical uncertainty. It is hence necessary to evaluate the uncertainty bounds of the obtained results, which can be
done by a first-order perturbation analysis. To obtain vibration measurements at many coordinates of a structure with
only a few sensors, it is common practice to use multiple sensor setups for the measurements. Recently, a multi-setup
subspace identification algorithm has been proposed that merges the data from different setups prior to the identifica-
tion step to obtain one set of global modal parameters, taking the possibly different ambient excitation characteristics
between the measurements into account. In this paper, an algorithm is proposed that efficiently estimates the covari-
ances on modal parameters obtained from this multi-setup subspace identification. The new algorithm is validated on
multi-setup ambient vibration data of the Z24 Bridge, benchmark of the COST F3 European network.

Keywords: System identification, Subspace methods, Modal analysis, Multi-setup measurements, Uncertainty
bounds

1. Introduction

Stochastic subspace identification methods have been proven efficient for Operational Modal Analysis (OMA),
where the modal parameters of mechanical or civil structures (frequencies, damping ratios, mode shapes) are obtained
from ambient vibration measurements [1–4]. To obtain vibration measurements at many coordinates of a structure
with only a few sensors, it is common practice to use multiple sensor setups for the measurements. For these multi-
setup measurements, some of the sensors, the so-called reference sensors, stay fixed throughout all the setups, while
the other sensors are moved from setup to setup [5–10]. By fusing in some way the corresponding data, this allows
to perform modal identification as if there was a very large number of sensors, even in the range of a few hundreds or
thousands.

Processing this multi-setup measurement data for structural analysis is often achieved by performing eigenstruc-
ture identification for each record separately, and then merging the results obtained for records corresponding to
different sensor setups. However, mode matching may be not easy in practice, and like this the result of mode shape
gluing may not be consistent [5–7]. An empirical merging approach for covariance-driven subspace identification
was described in [8], in which Hankel matrices containing the output correlations of the different setups are combined
before doing the global system identification. While this approach has shown good results in several test cases [8–10]
and no user interaction to match modes of different setups is necessary, it is lacking some theoretical properties when
the ambient excitation properties change between the measurements of the different setups. In [11, 12], a method
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was proposed to merge and to normalize the data from all the setups, before doing the global system identification
on it in one step, while taking the possibly different ambient excitation characteristics between the measurements into
account. This method was designed for covariance-driven subspace identification and generalized in [13] to a large
range of subspace methods, including data-driven subspace methods [2]. With this merging strategy, a theoretically
sound and simple identification of the modal parameters is possible. Furthermore, the merging approach can be used
in an iterative scheme where no global Hankel or observability matrix is necessary, but the desired system matrices
can be computed iteratively setup by setup, which is a computational advantage if the number of setups is large. The
method was successfully applied for the modal analysis of large civil structures e.g. in [14–17].

All identified modal parameters are afflicted with statistical uncertainty due to many reasons, such as finite number
of data samples, undefined measurement noises, non-stationary excitation, etc. Then the system identification algo-
rithms do not yield the exact system matrices and identification results are subject to variance errors. The identified
parameters from subspace identification are asymptotically normal distributed [18, 19] and their asymptotic variance
was considered in [20]. Covariance estimates on the identified parameters have been obtained in [21–23] based on
the propagation of first-order perturbations from the data to the identified parameters. A detailed formulation of the
covariance computation for the modal parameters from covariance-driven stochastic subspace identification is given
in [23]. The current paper expands on this and focuses on the covariance computation for multi-setup subspace identi-
fication with the approach from [13]. While this approach is based on the (theoretical) construction of a global matrix
that gathers data from all the setups that can be very large in the case of many setups and sensors, the actual compu-
tation of the global matrix can be avoided and the system matrices can be obtained iteratively from the setups. The
merging strategy can be written in a modular way, where the matrices of each measurement setup can be processed
separately without the need of assembling matrices with data from all setups. As the uncertainty computation depends
on the covariance of such matrices, whose dimensions are reduced due to the modular approach but that are still huge
as they are quadratic in terms of the underlying matrices, memory problems may arise. In this paper, special attention
is paid to the size explosion of the involved covariance matrices for a high number of measurement setups and an
efficient uncertainty quantification algorithm is derived, whose computational complexity increases only linearly with
the number of setups.

The paper is organized as follows. In Section 2, some preliminary modeling and the general subspace method
are stated. In Section 3, the global merging algorithm for measurements from multiple sensor setups is explained.
In Section 4, notations and results of the uncertainty computations for a single setup obtained in [23] are recalled.
With these foundations, the covariance computation for multi-setup measurements is derived in Section 5. A new
normalization scheme for the covariance computation of the mode shapes is proposed in Section 6. In Section 7, the
resulting algorithm is applied to the output-only multi-setup system identification of the Z24 Bridge benchmark in
order to obtain confidence bounds on the modal parameters.

2. Stochastic subspace identification (SSI)

2.1. Vibration modeling

The behavior of a vibrating structure is described by a continuous-time, time-invariant, linear dynamical system,
modeled by the vector differential system{

Mẍ(t) + Cẋ(t) +K x(t) = υ(t)
y(t) = Lx(t) (1)

where t denotes continuous time;M,C,K ∈ Rd×d are mass, damping, and stiffness matrices, respectively; the (high
dimensional) vector x(t) is the displacement vector of the d degrees of freedom of the structure; the external force υ(t)
is unmeasured; measurements are collected in the (low dimensional) vector y(t) and matrix L ∈ Rr×d indicates which
degrees of freedom are actually measured, i.e. the r sensor locations.

The parameters to be identified are the eigenvalues (or modes) µi and mode shapes ψi of system (1), which
comprise the modal parameters, and are solutions of

(µ2
iM + µiC +K)Ψi = 0, ψi = LΨi. (2)
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For simplicity, the measured outputs are displacements in model (1). However, also velocities, accelerations and, in
general, any kind of sensor measurements fitting some linear system modeling can be used [3], yielding the same set
of eigenvalues and mode shapes.

Sampling model (1) at rate 1/τ yields the discrete time state space model{
xk+1 = Axk + vk

yk = Cxk + wk,
(3)

with the states xk =
[
x(kτ)T ẋ(kτ)T

]T
∈ Rn, the outputs yk = y(kτ) ∈ Rr and the unobserved input and output distur-

bances v and w. The matrices A ∈ Rn×n and C ∈ Rr×n are the state transition and observation matrices, respectively,
with

A = eLτ, where L =

[
0 I

−M−1K −M−1C

]
, C =

[
L 0

]
.

The external force υ(t) and thus the state noise (vk) in model (3) can be non-stationary and colored noise [4, 24].
Define r(ref) as the number of so-called projection channels or reference sensors with r(ref) ≤ r, which are a subset of
the r sensors and can be used for reducing the size of the matrices in the identification process [3].

The eigenstructure (λ, ϕ) of system (3) is defined by the eigenvalues and eigenvectors of A and by C:

(A − λiI)φi = 0, ϕi = Cφi (4)

The desired modal parameters in (2) are equivalently found in the eigenstructure (λ, ϕ) of (3) and it holds

eµiτ = λi, ψi = ϕi.

The modal frequencies fi and damping coefficients ξi are recovered directly from the eigenvalues λi by

fi =

√
a2

i + b2
i

2πτ
, ξi =

−100bi√
a2

i + b2
i

, (5)

where ai = | arctan=(λi)/<(λi)| and bi = ln |λi|, <(·) and =(·) denoting the real and imaginary part of a complex
variable, respectively.

Thus, vibration analysis is stated as the problem of identifying the eigenstructure of a linear dynamic system.
Parameters of interest are the natural frequencies fi, damping ratios ξi and mode shapes ϕi.

2.2. The general SSI algorithm
There are many stochastic subspace identification algorithms in the literature, which differ in the construction of

a matrix H from the data, from which the observability matrix is obtained. See e.g. [1–4] and the related references
for an overview. Two examples are given in Appendix A. They all fit in the following general framework for the
identification of the system matrices A and C of system (3).

Let the parameters p and q be given such that pr ≥ qr(ref) ≥ n. A matrix H ∈ R(p+1)r×qr(ref)
is built from the

output data according to the chosen subspace algorithm, which will be called subspace matrix in the following. The
subspace algorithm is chosen such that the corresponding subspace matrix enjoys (asymptotically for a large number
of samples) the factorization property

H = OZ (6)

into the matrix of observability

O
def
= O(C, A) def

=


C

CA
...

CAp

 ∈ R(p+1)r×n (7)

and a matrixZ depending on the selected subspace algorithm.
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The observability matrix O is obtained from a thin SVD of the matrix H and its truncation at the desired model
order n:

H = UΣVT

=
[
U1 U0

] [Σ1 0
0 Σ0

] [
VT

1
VT

0

]
, (8)

O = U1Σ
1/2
1 , (9)

where

U1 =
[
u1 . . . un

]
∈ R(p+1)r×n, V1 =

[
v1 . . . vn

]
∈ Rqr(ref)×n, Σ1 = diag{σ1, . . . , σn} ∈ Rn×n.

The observation matrix C is then found in the first block-row of the observability matrix O. The state transition
matrix A is obtained from the shift invariance property of O, namely as the least squares solution of

O↑A = O↓, where O↑ def
=


C

CA
...

CAp−1

 , O↓
def
=


CA
CA2

...
CAp

 . (10)

The least squares solution can be obtained from

A = O↑
†
O↓, (11)

where † denotes the Moore-Penrose pseudoinverse. Note that the matrices O (from (9)), A and C are identified up to
an invertible matrix change of basis matrix T , such that the observability matrix OT and the system matrices CT and
T−1AT may be identified. The eigenstructure (λ, ϕ) in (4) is invariant under this change of basis.

3. Multi-setup stochastic subspace identification

The problem of stochastic subspace identification using non-simultaneously recorded data from multiple sensor
setups was addressed in [11, 12] and generalized in [13]. Instead of a single record for the output (yk) of the system (3),
Ns records (

y(1,ref)
k

y(1,mov)
k

)
︸       ︷︷       ︸
Record 1

(
y(2,ref)

k
y(2,mov)

k

)
︸       ︷︷       ︸
Record 2

. . .

(
y(Ns,ref)

k
y(Ns,mov)

k

)
︸         ︷︷         ︸
Record Ns

(12)

are now available collected successively. Each record j contains data y( j,ref)
k of dimension r(ref) from a fixed reference

sensor pool, and data y( j,mov)
k of dimension r( j) from a moving sensor pool. To each record j = 1, . . . ,Ns corresponds a

state-space realization in the form [11–13]
x( j)

k+1 = A x( j)
k + v( j)

k
y( j,ref)

k = C(ref) x( j)
k (reference pool)

y( j,mov)
k = C( j,mov) x( j)

k (sensor pool no j)
(13)

with a single state transition matrix A, since the same system is being observed1. The observation matrix C(ref) with
respect to the reference sensors is independent of the measurement setup as the reference sensors are fixed throughout

1This assumption may not strictly hold in practice e.g. due to temperature variations between the measurements [25], but is necessary to obtain
meaningful global system identification results of the same structure. The following merging approach for system identification was successfully
tested on a number of real structures [14–17] where small variations between the measurements naturally happen.
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the measurements, while the observation matrices C( j,mov) correspond to the moving sensor pool of each setup j. The
global observation matrix is then defined as

C =


C(ref)

C(1,mov)

...
C(Ns,mov)

 , (14)

which contains information of all sensor positions.
In order to identify the eigenstructure of system (13) on the basis of the measurements (12), the output-only

subspace algorithm of Section 2.2 is adapted. It is the aim to merge the data from the different records prior to the
identification step of the algorithm, so that the system identification steps in Section 2.2 as well as the subsequent
eigenstructure identification in (4)-(5) only have to be done once.

Local subspace matricesH ( j) can be computed on each of the Ns data records in (12), which all yield factorization
property (6) with a different observability matrix O( j) on the left and in general a different matrix Z( j) on the right
side. These matrices need to be merged somehow for a global merging approach, which would be easy if the matrices
Z( j) were equal for all setups j. However, there are several obstacles [13]:

• In general, the matricesZ( j) are dependent on different sensor sets. However, this can be solved with reference-
based subspace identification when using the same reference sensors in all setups.

• For most subspace algorithms, e.g. the data-driven algorithms in [2] as UPC, the matricesZ( j) have no expected
value as their size depends on the number of samples N and the initial state x( j)

0 , or they are not uniquely defined
due to LQ decompositions as in (A.4).

• The matrices O( j) andZ( j) might be in a different modal basis for each setup j, so that in fact Ô( j)T j and T−1
j Ẑ

( j)

are identified with an invertible unknown change of basis matrix T j ∈ Rn×n. This is also the reason why the
global observation matrix (14) cannot be obtained straightforward from a separate system identification of the
setups j = 1, . . . ,Ns.

• Multi-setup measurements take place over a longer time period than a single measurement and it is likely that
properties of the ambient excitation change between the measurement campaigns. Then, the covariance Q( j) of
the excitation noise v( j)

k may change for the different records. As Z( j) also depends on Q( j), it can be different
for each record.

In [13] an algorithm is derived that takes these considerations into account. A global observability matrix O(all) def
=

O(C, A) (cf. (7)) from all the records (12) is constructed as follows:

(a) For each setup j, the local subspace matrix H ( j) is built according to the chosen subspace algorithm using data
y( j,ref)

k and y( j,mov)
k , such thatH ( j) fulfills factorization property (6) with observability matrixO(

[
C(ref)T C( j,mov)T

]T
, A).

(b) Obtain the observability matrix O( j) from an SVD of H ( j), which is truncated at the desired model order n as in
(8)-(9). It holds

O( j) = O

([
C(ref)

C( j,mov)

]
, A

)
T j

with an unknown change of basis matrix T j, as the decomposition ofH ( j) is not unique.
(c) Select O( j,ref) and O( j,mov) from the block rows of O( j) as[

O( j,ref)

O( j,mov)

]
= P( j) O( j), P( j) =

[
Ip+1 ⊗ [Ir(ref) 0r(ref),r( j) ]
Ip+1 ⊗ [0r( j),r(ref) Ir( j) ]

]
, (15)

where ⊗ denotes the Kronecker product, Ia is identity matrix of size a × a and 0a×b is the a × b zero matrix. Note
that O( j,ref) = O(C(ref), A)T j and O( j,mov) = O(C( j,mov), A)T j.
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(d) Set O(ref) def
= O(1,ref) and compute the observability matrix parts

O( j,mov) def
= O( j,mov)O( j,ref)†O(ref),

which are in the same modal basis. It holds O( j,mov) = O(C( j,mov), A).
(e) Each of the matricesO(ref) andO( j,mov), j = 1, . . . ,Ns, are observability matrices of the form (7) with the block rows

C(ref)Ai and C( j,mov)Ai, for i = 0, . . . , p respectively. Stacking these block rows in the order C(ref)Ai,C(1,mov)Ai, . . . ,C(Ns,mov)Ai

for i = 0, . . . , p leads to the global observability matrix

O(all) = P


O(ref)

O(1,mov)

...

O(Ns,mov)

 , where P =


P0
P1
...

Pp

 with Pi =


P(ref)

i
P(1)

i
. . .

P(Ns)
i

 (16)

and P( j)
i = [0r( j),ir( j) Ir( j) 0r( j),(p−i)r( j) ]. Matrix P is a permutation matrix.

Remark 1. Due to factorization property (6), step (d) of the merging algorithm is equivalent to

O( j,mov) def
= H ( j,mov)H ( j,ref)†O(ref), (17)

whereH ( j,mov) andH ( j,ref) are defined by [
H ( j,ref)

H ( j,mov)

]
= P( j)H ( j), (18)

analogously to O( j,ref) and O( j,mov).

Finally, the global system matrices A and C are obtained from O(all) in one run. From O(all), the global observation
matrix C is recovered as the first block row and the state transition matrix A is the least squares solution of O(all)↑A =

O(all)↓.

Ĥ(1)

Ĥ(2)

Ĥ(Ns)

Ô(1,ref), Ô(1)

Ô(2)

Ô(Ns)

...
...

SVD + basis change

SVD + basis change

SVD + basis change

identificationmerging
Ô(all) f̂ , ρ̂, ϕ̂(all)

Figure 1: Merging and system identification scheme for modal analysis of multiple sensor setups.

3.1. Modular iterative computation of the system matrices

Matrices A and C can also be obtained in a modular way setup by setup: With (16) and defining the permutation
matrix P̃ analogously to (16) but with P̃( j)

i = [0r( j),ir( j) Ir( j) 0r( j),(p−i−1)r( j) ] only for i = 0, . . . , p − 1, the least squares
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solution for A can be expressed as

A =
(
O(all)↑TO(all)↑

)−1
O(all)↑TO(all)↓

=



P̃


O(ref)↑

O
(1,mov)↑

...

O
(Ns,mov)↑





T

P̃


O(ref)↑

O
(1,mov)↑

...

O
(Ns,mov)↑





−1 P̃


O(ref)↑

O
(1,mov)↑

...

O
(Ns,mov)↑





T

P̃


O(ref)↓

O
(1,mov)↓

...

O
(Ns,mov)↓


=

O(ref)↑TO(ref)↑ +

Ns∑
j=1

O( j,mov)↑TO( j,mov)↑


−1 O(ref)↑TO(ref)↓ +

Ns∑
j=1

O( j,mov)↑TO( j,mov)↓

 (19)

as P̃T P̃ = I. Thus, the solution for A can be computed iteratively setup by setup by starting with K = O(ref)↑TO(ref)↑,
L = O(ref)↑TO(ref)↓, and updating K = K + O( j,mov)↑TO( j,mov)↑, L = L + O( j,mov)↑TO( j,mov)↓ in each setup j, from where
at the end A = K−1L follows. Matrix C can be directly filled with the first block rows of O(ref) and O

( j,mov)
, j =

1, . . . ,Ns, while the setups are processed. Like this, there is no need to assemble the potentially large matrix O(all) in
(16) explicitly, but one can operate directly on the matrices O( j,mov) that are obtained in each setup for the iterative
computation of A and C.

3.2. Comparison to other merging approaches
Processing the multi-setup measurement data is often achieved by performing the modal parameter identification

for each record separately, and then merging the results obtained for records corresponding to different sensor setups.
However, this procedure may require significant user input for the analysis of stabilization diagrams, especially when
many setups are processed [8, 15]. Mode matching between the different may be not easy in practice for closely
spaced modes or modes that are weakly excited in some of the setups.

An empirical merging approach for covariance-driven subspace identification was described in [8], in which the
output correlations of the different setups are combined before doing the global system identification, but without
doing a normalization step as in (17) before the identification. While this approach has shown good results in several
test cases [8–10] and no user interaction to match modes of different setups is necessary, it is lacking some theoretical
properties when the ambient excitation changes between the measurements of the different setups. Then, Hankel
matrices are combined with different left factors (due to changing sensor sets) and with different right factors (due to
changing excitation). For example, assume two setups withH (1) = O(1)Z(1) andH (2) = O(2)Z(2), where O(1) and O(2)

are in the same state space basis. Then, the matrices Z(1) and Z(2) can be different due to changes in the excitation,
and the stacked global matrix

H (all) =

[
H (1)

H (2)

]
=

[
O(1)Z(1)

O(2)Z(2)

]
does not have a theoretically valid factorization property for the extraction of the observability matrix for the subspace
identification anymore: O(1) and O(2) cannot be extracted fromH (all) ifZ(1) , Z(2). Nonetheless, a matrix is obtained
from an SVD of H (all) that is considered as the observability matrix in the empirical approach, and the parts in the
obtained mode shapes corresponding to each setup are rescaled in a postprocessing step with the help of the reference
sensors [8] to account for possible changes in the excitation. While this approach may still be feasible for moderate
changes in the unmeasured excitation characteristics, the considered merging approach in this paper is designed for
taking into account these changes, which was proven in [13]. It combines the practical advantages of the empirical
approach in [8] with a theoretical foundation. Furthermore, it applies to a large range of subspace methods, including
data-driven subspace methods. Also, the merging approach can be used in an iterative scheme where no global
subspace or observability matrix is necessary, but the desired system matrices can be computed iteratively setup by
setup as pointed out in Section 3.1, which is a computational advantage if the number of setups is large.

Other global merging approaches in frequency domain were proposed for maximum likelihood identification in
[26] and for NExT-ERA in [27, 28]. For subspace identification, the considered merging approach in this paper has
been extended to frequency domain in [29].
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4. Covariance computation for stochastic subspace identification of a single setup

In this section, the notations and basic principles of the covariance computations in the subsequent sections are
introduced. In particular, the concept of perturbation to compute uncertainty bounds is defined and the covariance
computation of the modal parameters from [23] is recalled.

4.1. Definitions
First, the notation of perturbation is defined. Let X be a smooth and bounded matrix function of an artificial scalar

variable, where X(0) is the “true value” of X and X(t) is a perturbed (estimated) value of X, where t is small. Thus,
the matrix can be expressed as X = X(t) when computed from an estimated X, while X(0) is their true but unknown
value. Using the Taylor expansion

X(t) = X(0) + tẊ(0) + O(t2),

a first-order perturbation is denoted by ∆X def
= tẊ(0) = X(t) − X(0) + O(t2) for small t. Then, a perturbation on X can

be propagated for any function Y = f (X) by vec(∆Y) = JY,X vec(∆X), where JY,X is the sensitivity of vec(Y) with
respect to vec(X) and where vec denotes the vectorization operator, which stacks the columns of a matrix on top of
each other. Finally, the covariance of vec(Y) is linked to the covariance of vec(X) by

cov(vec(Y)) = JY,X cov(vec(X))JT
Y,X .

For example, a first-order perturbation of the subspace matrixH is propagated to a perturbation of the system matrices
A and C and to the modal parameters fi, ξi and ϕi by deriving the respective sensitivities. The covariance of the
subspace matrix H is denoted by ΣH

def
= cov(vec(H)). Its estimate Σ̂H can be obtained from cutting the available

sensor data into blocks and is explained in Appendix B.1.

4.2. Covariances of modal parameters from single-setup SSI
Consider the stochastic subspace identification from Section 2.2, where the modal parameters (natural frequencies

fi, damping ratios ξi and mode shapes ϕi) are obtained from output-only data of one measurement setup. A first-
order perturbation on the subspace matrixH can be propagated to perturbations in the system matrices and finally to
perturbations in the modal parameters. The variances of the modal parameters can be obtained in this way and depend
on the covariance ΣH of the subspace matrix. Thus, this offers a possibility to compute the uncertainty bounds of the
modal parameters without repeating the system identification. In [23], this algorithm was described in detail for the
covariance-driven SSI. A perturbation ∆A and ∆C of the system matrices A and C is connected to a perturbation of
the subspace matrix through a sensitivity matrix JAC,H by[

vec(∆A)
vec(∆C)

]
= JAC,H vec(∆H), (20)

where JAC,H is recalled from [23] in Appendix B.2. Hence, the covariance ΣA,C of the vectorized system matrices
can be expressed as

ΣA,C
def
= cov

([
vec(A)
vec(C)

])
= JAC,H ΣH J

T
AC,H . (21)

As the modal parameters are functions of the system matrices A and C, a perturbation analysis yields

∆ fi = J fi,Avec(∆A), ∆ξi = Jξi,Avec(∆A), ∆ϕi = Jϕi,AC

[
vec(∆A)
vec(∆C)

]
, (22)

where J fi,A, Jξi,A and Jϕi,AC are the respective sensitivities for each mode i and are stated in Appendix B.3. Finally,
the covariances of the modal parameters are obtained as

cov
([

fi
ξi

]
,

[
f j

ξ j

])
=

[
J fi,A 01,rn

Jξi,A 01,rn

]
ΣA,C

[
J f j,A 01,rn

Jξ j,A 01,rn

]T

,

cov
([
<(ϕi)
=(ϕi)

]
,

[
<(ϕ j)
=(ϕ j)

])
=

[
<(Jϕi,AC)
=(Jϕi,AC)

]
ΣA,C

[
<(Jϕ j,AC)
=(Jϕ j,AC)

]T

.

(23)
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5. Covariance computation for multi-setup stochastic subspace identification

As the system matrices A and C are obtained differently for multi-setup measurements in Section 3 than for a single
measurement in Section 2.2, their covariance computation has to be adapted. In the previous section, their covariance
was obtained by deriving sensitivities of the system matrices with respect to the subspace matrixH . Now, the global
system matrices A and C depend on subspace matricesH ( j) from different measurement setups j = 1, . . . ,Ns and the
respective sensitivities need to be derived. As the involved matrices can get very large for many setups and sensors,
special care is taken to avoid their size explosion when obtaining the covariance ΣA,C for the multi-setup measurements
in this section. After this step, the covariance of the modal parameters can be obtained from ΣA,C in (23).

The covariance computation for the multi-setup case is done analogously to the single-setup case, but following the
computation in Section 3. First, perturbations ∆H ( j) of the local subspace matrices are propagated to perturbations
∆O(ref) and ∆O( j,mov) of the normalized parts of the merged observability matrix O(all) in (16), and second, these
perturbations are propagated to perturbations ∆A and ∆C in the global system matrices. Finally, the covariances ΣA,C

of the vectorized system matrices are computed.
The results of these derivations are summarized in this section, while the respective sensitivity matrices are derived

in detail in Appendix C.1.

Lemma 2. Small perturbations inH ( j) are propagated to O(ref) and O( j,mov), j = 1, . . . ,Ns, by

vec(∆O(ref)) = JO(ref),H (1) vec(∆H (1)),

vec(∆O( j,mov)) = J
O j,O(ref) JO(ref),H (1) vec(∆H (1)) +J

O j,H ( j) vec(∆H ( j)),

where the sensitivities JO(ref),H (1) , J
O j,O(ref) and J

O j,H ( j) are defined in Equations (C.3), (C.8) and (C.9), respectively.

Proof. See Appendix C.1.

The perturbations in O(ref) and O( j,mov), j = 1, . . . ,Ns, are propagated to A and C in the following lemma, based on
the solution for the system matrices in the multi-setup setting in (19).

Lemma 3. Small perturbations in O(ref) and O( j,mov), j = 1, . . . ,Ns, are propagated to A and C by

vec(∆A) = JA,O(ref) vec(∆O(ref)) +

Ns∑
j=1

J
A,O

j vec(∆O( j,mov)),

vec(∆C) = JC,O(ref) vec(∆O(ref)) +

Ns∑
j=1

J
C,O

j vec(∆O( j,mov)),

where the sensitivities JA,O(ref) , J
A,O

j , JC,O(ref) and J
C,O

j are defined in Equations (C.12), (C.13) and (C.14), respec-
tively.

Proof. See Appendix C.1.

Thus, a perturbation of the system matrices is the linear combination of the perturbations of all local (normalized)
observability matrices. Plugging the results of Lemma 2 into Lemma 3, the perturbations of the system matrices can
be expressed by the perturbations of the local subspace matrices and it follows

[
vec(∆A)
vec(∆C)

]
=

Ns∑
j=1

JAC, j vec(∆H ( j)) =
[
JAC,1 . . . JAC,Ns

] 
vec(∆H (1))

...
vec(∆H (Ns))

 , (24)

where

JAC,1
def
=

[
JA,O(ref)

JC,O(ref)

]
JO(ref),H (1) +

Ns∑
j=1

JA,O
j

J
C,O

j

JO j,O(ref) JO(ref),H (1) ,

JAC, j
def
=

JA,O
j

J
C,O

j

JO j,H ( j) , j ≥ 2.

(25)
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From (24), it follows for the covariance ΣA,C of the vectorized system matrices

ΣA,C = cov
([

vec(A)
vec(C)

])
=

[
JAC,1 . . . JAC,Ns

]
cov




vec(H (1))
...

vec(H (Ns))




JT

AC,1
...

JT
AC,Ns

 .
However, this expression is dependent on the covariance of the stacked vectorized subspace matrices of all measure-
ment setups, which grows quadratically with the number of setups and sensors and easily causes memory problems.
In the following theorem, a more efficient solution is proposed.

Theorem 4. Let ΣH ( j) = cov(vecH ( j)), j = 1, . . . ,Ns, be the covariances of the local subspace matrices and let the
sensitivities in (25) be given. Then, the covariance of the system matrices obtained from multi-setup SSI writes as

ΣA,C =

Ns∑
j=1

JAC, j ΣH ( j) JT
AC, j. (26)

Proof. As the data records from different measurement setups are collected at different times, they can be assumed to
be uncorrelated. Hence, the local subspace matricesH ( j) are statistically independent and it holds cov(vecH ( j1), vecH ( j2)) =

0 for j1 , j2. Thus, it follows from (24)

ΣA,C =
[
JAC,1 . . . JAC,Ns

] 
ΣH (1) 0

. . .

0 ΣH (Ns )



JT

AC,1
...

JT
AC,Ns


and the assertion follows.

Note that in Theorem 4, the size of the involved covariance matrices is reduced considerably by assuming statistical
independence of the data from different setups, as only the matrices ΣH ( j) , j = 1, . . . ,Ns, are needed and no cross-
covariance estimates between different setups.

Using Theorem 4, the covariance and hence the uncertainty bounds of the modal parameters can be computed as
stated in (23).

6. Mode shape normalization

As the mode shapes are only defined up to a complex-valued factor, a normalization may be chosen when evalu-
ating their covariance. In [23] the so-called unit modal displacement is chosen, where the mode shape is scaled such
that one element is unity. In this case, the mode shape ϕi yields

ϕi =
1

(Cφi)k
Cφi (27)

for an eigenvector φi of A, where (Cφi)k indicates the k-th entry of the arbitrarily scaled mode shape (Cφi). Thus, ϕi is
defined such that its k-th entry is 1. The respective covariance computation for the resulting mode shape is derived in
[23] and summarized in Appendix B.3.

However, this normalization scheme leads to a variance of zero of the k-the mode shape element, as its value is
deterministic. Moreover, the k-th value of (Cφi) needs to be clearly non-zero for normalization, thus leading to a mode
shape value with a rather high amplitude but zero variance.

In the following, a more intuitive normalization scheme is proposed, where the resulting mode shape has its
maximal amplitude of deflection, and the corresponding sensitivities for the mode shape covariance computation are
derived. Like this, the mode shape is rotated such that the imaginary part of one mode shape component is zero.
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Proposition 5. Let φi be an eigenvector of A and k be the component of the corresponding mode shape (Cφi) with the
maximal absolute value. Denote this component by si,k

def
= (Cφi)k = ti,k eiαi,k , where ti,k and αi,k are its absolute value

and phase, respectively. Define the normalized mode shape as

ϕ̃i
def
= e−iαi,kCφi.

Then, a perturbation on the system matrices is propagated to the mode shape by

∆ϕ̃i = Jϕ̃i,AC

[
vec(∆A)
vec(∆C)

]
,

where the sensitivity Jϕ̃i,AC writes as

Jϕ̃i,AC = e−iαi,k
(
−it−2

i,k Cφi

[
−=(si,k)eT

k <(si,k)eT
k

]
+

[
Ir iIr

]) [C<(Jφi,A) <(φi)T ⊗ Ir

C=(Jφi,A) =(φi)T ⊗ Ir

]
, (28)

with the unit vector ek ∈ Rr being 1 at entry k and 0 elsewhere and Jφi,A defined in Appendix B.3.

Proof. See Appendix C.2.

It is emphasized that the unit modal displacement normalization in (27) as well as the proposed normalization to
the maximal amplitude of deflection are both theoretically valid normalization schemes, while introducing different
constraints. They are applied after the global mode shape estimate is obtained from the considered multi-setup system
identification, where the full mode shape is extracted at once with all its parts correctly scaled. The associated
uncertainty computation inherits this property as well, and it is not necessary to normalize the mode shape at one of
the reference sensors to unity. The mode shape normalization does not depend anymore on the choice of the reference
sensors that stay fixed throughout all the setups. In the unit modal displacement scheme, a particular sensor has to be
chosen for the mode shape normalization, which now can be any sensor, and the variance of the real and imaginary
part of this point is thus 0. In the new scheme, the mode shape is rotated by the phase angle of the degree of freedom
with maximal absolute value, so that only the variance of the imaginary part of this point is 0. Both approaches benefit
from the global modular identification and uncertainty computation.

A summary of the computation of the modal parameters and their variances from multiple setups with the pre-
sented strategies is summarized in Algorithm 1, where matrices A and C are computed in one run. Alternatively to
Step 12 in the algorithm, the iterative computation scheme from Section 3.1 can also be used.

7. Application: Modal analysis of Z24 Bridge

7.1. The test case
The proposed algorithms have been applied on vibration data of the Z24 Bridge [30], a benchmark of the COST

F3 European network. The analyzed data is the response of the bridge to ambient excitation (traffic under the bridge)
measured in 154 points, mainly in the vertical and at some points also the transverse and lateral directions, and sampled
at 100 Hz. Because at most 33 sensors were available (counting one sensor for each measured direction), Ns = 9 data
sets have been recorded, each containing the measurements from r(ref) = 5 fixed and 28 moving sensors, except dataset
j = 5 containing only 22 moving sensors. Like this, altogether 251 sensors were mimicked. Each signal contains
65,535 samples. In Figure 2, the model of the bridge with all sensor positions and directions is shown.

7.2. Modal analysis and uncertainty computation
In operational modal analysis, the true system order is in general unknown. A larger model order must be assumed

in order to retrieve a desired number of modes, as weakly excited modes only appear at high model orders and the
noise dynamics need to be decoupled from the system dynamics in case of colored excitation noise appearing in
practice [31]. With system identification results at multiple model orders, the identified physical system modes can
be distinguished from noise modes, as the latter tend to vary at different orders [3, 23, 32]. The identified frequencies
are plotted in a stabilization diagram against their model order. From the modes common to many models and using
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Algorithm 1 Subspace Identification and Covariance Computation for Multiple Setups
Input: Local subspace matrix estimatesH ( j) and their covariances ΣH ( j) , j = 1, . . . ,Ns

1: Compute O(1) from SVD ofH (1) and select O(ref) from O(1) Eq. (15)
2: Compute JO(ref),H (1) , JA,O(ref) and JC,O(ref) Eqs. (C.3), (C.12), (C.14)

3: Initialize JAC,1 =

[
JA,O(ref)

JC,O(ref)

]
JO(ref),H (1) , ΣA,C = 0

4: for j = 1 to Ns do
5: SeparateH ( j) intoH ( j,ref) andH ( j,mov) Eq. (18)
6: Compute O( j,mov) = H ( j,mov)H ( j,ref)†O(ref) Eq. (17)
7: Compute J

O j,O(ref) , JO j,H ( j) , JA,O
j and J

C,O
j Eqs. (C.8), (C.9), (C.13), (C.14)

8: Add JAC,1 = JAC,1 +

JA,O
j

J
C,O

j

JO j,O(ref) JO(ref),H (1) Eq. (25)

9: If j ≥ 2: Compute JAC, j =

JA,O
j

J
C,O

j

JO j,H ( j) and add ΣA,C = ΣA,C +JAC, j ΣH ( j) JT
AC, j Eqs. (25), (26)

10: end for
11: Add ΣA,C = ΣA,C +JAC,1 ΣH (1) JT

AC,1 Eq. (25)
12: Obtain A and C from observability matrix parts and get modal parameters Eqs. (11), (16), (4), (5)
13: Obtain variance estimates of modal parameters from ΣA,C Eq. (23), (28), Appendix B.3
Output: Global modal parameters and their variances

Figure 2: Model of Z24 Bridge with sensor positions and directions.

further stabilization criteria, such as a threshold on damping values, low variation between modes and mode shapes
of successive orders etc., the final estimated model is obtained.

Using the reference-based covariance-driven subspace method (see Appendix A), the subspace matrices Ĥ ( j) are
computed for each setup j = 1, . . . , 9 with the parameters p+1 = q = 40. The global observability matrix Ô(all) is then
obtained from the merging procedure explained in Section 3, which is used for the global system identification with
the generic subspace identification algorithm and the subsequent computation of the modal parameters in Section 2.
This identification is repeated while truncating at the model orders n = 1, . . . , 100.

The data of each setup j = 1, . . . , 9 was cut into nb = 200 blocks for the estimation of ΣH ( j) of each setup for the
covariance computations (see Appendix B.1). Then, the standard deviations of the system identification results are
obtained from the covariance computation for multi-setup SSI in Section 5 at each of the model orders n = 1, . . . , 100.
In Figure 3, the stabilization diagram at these model orders containing the natural frequencies and their standard
deviations is shown. Note that the uncertainty bounds on the estimated modal parameters can be used as another
criterion for the selection of the modes in a stabilization diagram. In Figure 3, only frequencies are plotted with the
criteria fi < 30 Hz, 0.1 < ξi < 10 and a threshold on the coefficient of variation of the frequencies as 100σ fi/ fi < 1.5
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Figure 3: Stabilization diagram of natural frequencies with confidence intervals ±σ fi .

Table 1: Identified frequencies and damping ratios with coefficients of variation.

Mode fi (Hz) 100σ fi/ fi ξi (%) 100σξi/ξi

1 3.864 0.05 0.61 8.8
2 4.883 0.05 1.43 4.7
3 9.787 0.06 1.36 3.6
4 10.32 0.09 1.87 5.4
5 12.33 0.19 3.40 4.9
6 13.27 0.16 3.47 4.3
7 17.20 0.95 7.18 14
8 19.22 0.21 2.83 8.6
9 19.79 0.23 3.97 5.5
10 26.83 0.58 4.86 13

(less than 1.5%), where σ fi =
√

cov( fi).
From the stabilization diagram, 10 modes could be identified. Note that in the frequency range of 20–30 Hz

a number of modes appear that seem to stabilize in the diagram, where only the mode at nearly 27 Hz is a true
structural mode. In Table 1, the natural frequencies and damping ratios of all modes are summarized together with
their coefficients of variation in percent of the respective value. In Figure 4, the real parts of the estimated mode
shapes at their maximal amplitude are presented. The obtained system identification results are in good accordance
with previous studies and the entire set of all 10 modes could be retrieved from the ambient vibration data in this
study, e.g. in comparison to [26, 33] where some of the modes could only be retrieved from shaker data.

In Figures 5 and 6, the ±2σϕi confidence bounds of the mode shapes are shown, where the mode shape normaliza-
tion from Section 6 is used. Only one sensor row is used for the visualization, namely the front row (see Figure 2) for
vertical and torsional modes in Figure 5 and the middle row with the sensors in the lateral direction for lateral mode
2 in Figure 6. As it can be seen from these figures as well as from Table 1, only mode 7 has quite high confidence
bounds, as it is apparently weakly excited and appears only late in the stabilization diagram. In general, the uncer-
tainty bounds of the frequencies are much smaller than those of damping ratios, which is coherent with statistical
theory [34].
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Figure 4: Mode shapes of Z24 Bridge.

Finally, the confidence bounds for the mode shape normalization from Section 6 are compared to the unit modal
displacement normalization from [23] exemplarily for the first mode shape in Figure 7, where also the coefficients of
variation in each degree of freedom are shown. In (a), the proposed mode shape normalization from Section 6 is used,
where the mode shape is normalized to its maximum amplitude of deflection. In (b)–(d) the unit modal displacement
normalization from [23] is used with respect to different sensors: (b) w.r.t. first reference sensor; (c) w.r.t. sensor in
the middle peak; (d) w.r.t. sensor in the smaller side peak. In all normalization schemes, the coefficient of variation of
the mode shape parts with high amplitude are lower than of the parts close to zero, as one expects. The coefficients
of variation of the mode shapes are quite different depending on the chosen normalization scheme. For example, the
coefficient of variation in the middle peak varies between 2–2.5% in schemes (a), (b) and (d), while it is 0 in (c). In
the side peaks, they vary between 0–20%, reaching up to 600% at the degrees of freedom close to zero. Note that the
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Figure 5: Mode shapes at sensors of the front row of the bridge deck in vertical direction with ±2σϕi confidence bound.

mode 2

Figure 6: Mode shape at sensors of the middle row of the bridge deck in lateral direction with ±2σϕi confidence bound.

covariance computation with the new scheme in (a) is less influenced by the choice of a particular sensor for the mode
shape normalization, in constrast to (b)–(d).
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Figure 7: Mode shape normalization of first mode with strategy from Section 6 in (a) and with strategy from [23] in (b)–(d), where the normalization
sensors are: (b) first reference sensor, (c) sensor in middle peak, (d) sensor in right side peak. The ±6σϕi confidence bound of the mode shape and
the coefficients of variation in % are shown.
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8. Discussion and conclusions

In this paper, a memory efficient algorithm has been derived for the uncertainty quantification of modal parameters,
which are obtained from a theoretically profound merging algorithm for multi-setup subspace identification [13]. The
design of the algorithm takes possibly different ambient excitation properties between the setups into account, while
being scalable for a large number of setups and sensors. The theoretical properties of the merging algorithm were
shown in [13] and are extended to the new associated uncertainty computation described in this paper. It has been
shown that the covariance of the system matrices is a weighted sum of the covariances of all local subspace matrices
for each setup, which can be computed efficiently and iteratively. A new intuitive normalization scheme for the
mode shape covariance computation has been proposed. The method was successfully applied on multi-setup ambient
vibration data of the Z24 Bridge benchmark. The proposed method is applicable to any kind of covariance-driven
subspace methods including frequency domain subspace methods as in [29], as well as data-driven methods [35],
provided a scheme for the covariance computation of the subspace matrix is available.

The numerical results obtained in Section 7 are comparable to similar previous studies [8, 23, 36], still exhibiting
a more automated and parameter free multi-setup approach since only one global identification step is performed
as well as only one global related uncertainty computation for all setups. No matching of modes between setups is
needed anymore. In the stabilization diagrams, the confidence bounds vary with the model order and can also be a tool
for selecting modes of high quality as well as discriminating between spurious and physical modes. Weakly excited
modes tend to have high confidence intervals, which is not surprising. These observations still have to be validated by
more experiments.

In terms of efficiency, the multi-setup covariance computation consumes less memory and is also computation-
ally more efficient than working on the full subspace matrix built from all the measurements, which would yield a
practically infeasible computation for real cases. Avoiding the computation of big matrices allows also to go high
in the model order, which is useful for analyzing weakly excited modes that appear late in the stabilization diagram.
Moreover, Theorem 4 ensures that the method will scale with more setups and sensors accordingly with little penalty.
Computation time is expected to increase linearly with the number of setups. The computation time for the reported
application (identification and covariance computation) was around 15 minutes on a desktop computer, but optimiza-
tion was not the topic of interest for this paper and may be investigated in the future.

Since the multi-setup SSI retrieves the mode shape estimates using only one global identification step and avoids
gluing mode shape parts from different setups, there are less constraints on the normalization of the mode shape
for its covariance computation with the proposed scheme in this paper. In particular, the choice of the mode shape
component for normalization in (27) in the unit modal displacement weighting from [23] (leading to zero variance of
this component) can be done on any sensor, not only one of the reference sensors available in all setups. With the new
scheme in Section 6, the mode shape is normalized to maximal amplitude, and the mode shape components with a
low amplitude show also a low absolute uncertainty and vice versa. The coefficients of variation of the components
with higher amplitude are the lowest as they are typically better estimated, while components close to zero show huge
coefficients of variation. Both normalization schemes are theoretically valid and can be used, while the new scheme
follows a more intuitive approach.

Note that changes in the modal parameters between measurements are not considered in the merging approach, but
may be present in reality e.g. due to temperature or other environmental variations. The effect of significant changes in
the structure on the computation of modal parameters that are still meaningful in the multiple setup problem remains
to be investigated, and the pertinence of a naive fusion of the modal parameters may even be questionable in this
case. These variations are a general nuisance for system identification from multiple measurements, affecting no less
the considered merging method in this paper than other approaches. While small changes between the measurements
have not posed a problem for the considered method in [14–17], this problem as well as the effects on the uncertainty
computation should be addressed in future works.
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Appendix A. Examples of SSI Algorithms

In this section, examples of subspace matricesH are given that are related to two widely used output-only stochas-
tic subspace identification algorithms. Let N + p + q be the number of available samples and y(ref)

k ∈ Rr(ref)
the vector

containing the reference sensor data, which is a subset of yk for all samples. Then, define the data matrices

Y+ =
1
√

N



yq+1 yq+2
... yN+q

yq+2 yq+3
... yN+q+1

...
...

...
...

yq+p+1 yq+p+2
... yN+p+q


, Y− =

1
√

N



y(ref)
q y(ref)

q+1

... y(ref)
N+q−1

y(ref)
q−1 y(ref)

q
... y(ref)

N+q−2
...

...
...

...

y(ref)
1 y(ref)

2

... y(ref)
N


. (A.1)

For covariance-driven SSI [1, 3, 4], let Ri
def
= E(yky(ref)T

k−i ) ∈ Rr×r(ref)
and the block Hankel matrix

Hcov def
=


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q

 (A.2)

be the theoretical output-correlation and subspace matrices, where E denotes the expectation operator. It enjoys
the factorization property (6), where Z is the controllability matrix. The empirical correlations are estimated from
R̂i = 1

N−i
∑N

k=i+1 yky(ref)T
k−i . Another estimate of the covariance-driven subspace matrix is

Ĥcov = Y+(Y−)T . (A.3)

For data-driven SSI with the Unweighted Principal Component (UPC) algorithm [2–4], the estimate of the sub-
space matrix is defined as

Ĥdat = Y+(Y−)T (Y−(Y−)T )†Y−.

where † denotes the pseudoinverse. Then, factorization property (6) holds asymptotically, where Z is the Kalman
filter state matrix. With the partitioning of the thin LQ decomposition of[

Y−

Y+

]
=

[
R11 0
R21 R22

] [
Q1
Q2

]
(A.4)

the relation Ĥdat = R21Q1 follows, where R21 ∈ R(p+1)r×qr(ref)
and Q1 ∈ Rqr(ref)×N . As Q1 is an orthogonal matrix, the

estimate of the observability matrix Ô is obtained from R21 in the implementation of the algorithm, and Ĥdat,R def
= R21

is defined as a subspace matrix.

Appendix B. Details for covariance computation in Section 4

Appendix B.1. Estimating the covariance of the subspace matrix
For an estimation of the covariance ΣH , the data matrices Y+ and Y− from (A.1) are split into nb blocks and

normalized with respect to their length, such that
√

NY+ =
√

Nb

[
Y+

1 Y+
2 . . . Y+

nb

]
,
√

NY− =
√

Nb

[
Y−1 Y−2 . . . Y−nb

]
, (B.1)

where each block Y+
j and Y−j may have the same length Nb, with nb · Nb = N for simplicity. Each block may be long

enough to assume statistical independence between the blocks. On each of theses blocks, the corresponding subspace
matrix can be estimated and used for an empirical estimation of ΣH . The covariance of the subspace matrix in the
covariance-driven case follows easily from the covariance of the sample mean and was used e.g. in [23]. There, the
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covariance of the vectorized Hankel matrix (A.2) is obtained from the covariance ΣR of the vectorized correlations
R

def
=

[
RT

1 RT
2 . . . RT

p+q

]T
∈ R(p+q)r×r(ref)

as

ΣHcov = S 1 ΣR S T
1

to reduce the size of the involved matrices, where S 3 ∈ R(p+1)rqr(ref)×(p+q)rr(ref)
is a selection matrix that fills the vectorized

Hankel matrixHcov with the vectorized correlations in R such that vec(H) = S 3 vec(R) and is defined as

S 1
def
=

[
S T

1,1 S T
1,2 . . . S T

1,q

]
where S 1,k

def
= Ir(ref) ⊗

[
0(p+1)r×(k−1)r I(p+1)r 0(p+1)r×(q−k)r)

]
.

Let R̂ j be an estimate of R computed on the data blocks Y+
j and Y−j , then R̂ = 1

nb

∑nb
j=1 R̂ j and a covariance estimate

follows from

Σ̂Hcov = S 1 Σ̂R S T
1 where Σ̂R =

1
nb(nb − 1)

nb∑
j=1

(
vec(R̂ j) − vec(R̂)

) (
vec(R̂ j) − vec(R̂)

)T
.

Similarly, the estimate (A.3) of the covariance-driven subspace matrix can be used directly and a subspace matrix
estimate Ĥcov

j
def
= Y+

j (Y−j ) T is computed on each data block from (B.1). Then, Ĥcov = 1
nb

∑nb
j=1 Ĥ

cov
j and a covariance

estimate of the covariance-driven subspace matrix writes as

Σ̂Hcov =
1

nb(nb − 1)

nb∑
j=1

(
vec(Ĥcov

j ) − vec(Ĥcov)
) (

vec(Ĥcov
j ) − vec(Ĥcov)

)T
.

For the covariance estimation in the data-driven case, the non-uniqueness of the LQ decomposition (A.4) has to
be taken into account. Estimates for the UPC algorithm have been derived in [35].

Appendix B.2. Covariance estimation of the system matrices A and C

The covariance estimation of the matrices A and C is done in three steps: First, a perturbation ∆H of the subspace
matrix is propagated to a perturbation ∆O of the observability matrix, and second, a perturbation ∆O is propagated
to perturbations ∆A and ∆C in the system matrices. Finally, the covariances of the vectorized system matrices are
computed.

First, define the permutation

Pa,b
def
=

a∑
k=1

b∑
l=1

Ea,b
k,l ⊗ Eb,a

l,k ,

where Ea,b
k,l is a matrix of size a × b that is equal to 1 at position (k, l) and zero elsewhere. For any matrix X ∈ Ra,b it

has the property [22]
vec(XT ) = Pa,bvec(X). (B.2)

Lemma 6 ([22]). Let σi, ui and vi be the ith singular value, left and right singular vector of some matrix X ∈ Ra×b

and ∆X a small perturbation on X. Then it holds

∆σi = (vi ⊗ ui)T vec(∆X), Bi

[
∆ui

∆vi

]
= Civec(∆X),

where

Bi
def
=

[
Ia − 1

σi
X

− 1
σi

XT Ib

]
, Ci

def
=

1
σi

[
vT

i ⊗ (Ia − uiuT
i )

(uT
i ⊗ (Ib − vivT

i ))Pa,b

]
.
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Using this result for X = H , the sensitivity of the observability matrix is derived in [23]. Define S 2
def
=

∑n
k=1 En2,n

(k−1)n+k,k
and it follows

vec(∆O) = JO,H vec(∆H)

where JO,H ∈ R(p+1)rn×(p+1)rqr(ref)
with2

JO,H
def
=

1
2

(
In ⊗ U1Σ

−1/2
1

)
S 2


(v1 ⊗ u1)T

...
(vn ⊗ un)T

 +
(
Σ

1/2
1 ⊗

[
I(p+1)r 0(p+1)r×qr(ref)

]) 
B†1C1
...

B†nCn

 . (B.3)

In the next step, the sensitivity of the system matrices with respect to the observability matrix is obtained as

vec(∆A) = JA,O vec(∆O), vec(∆C) = JC,O vec(∆O),

where JA,O ∈ Rn2×(p+1)rn, JC,O ∈ Rrn×(p+1)rn, with

JA,O
def
= (In ⊗ O

↑†S ↓) − (AT ⊗ O↑
†
S ↑) + ((O↓

T
S ↓ − ATO↑

T
S ↓) ⊗ (O↑

T
O↑)−1)P(p+1)r,n,

JC,O
def
= In ⊗

[
Ir 0r,pr

]
and the selection matrices

S ↑
def
=

[
Ipr 0r×pr

]
, S ↓

def
=

[
0r×pr Ipr

]
, (B.4)

such that S ↑O = O↑, S ↓O = O↓. Thus, the sensitivity of the system matrices with respect to the subspace matrix
JAC,H in (20)–(21) writes as

JAC,H =

[
JA,O

JC,O

]
JO,H .

Appendix B.3. Covariance estimation of the modal parameters
In [23], the sensitivity derivations for the eigenvalues and eigenvectors of a matrix and subsequently for the modal

parameters are stated, based on derivations in [22, 37]. They are summarized in the following. Let λi, φi and χi be the
i-th eigenvalue, right eigenvector and left eigenvector of A with

Aφi = λiφi, χ∗i A = λiχ
∗
i ,

where ∗ denotes the complex conjugate transpose. Then,

∆λi = Jλi,Avec(∆A), ∆φi = Jφi,Avec(∆A),

where Jλi,A ∈ C1×n2
, Jφi,A ∈ Cn×n2

, with

Jλi,A
def
=

1
χ∗i φi

(φT
i ⊗ χ

∗
i ), Jφi,A

def
= (λiIn − A)†

(
φT

i ⊗

(
In −

φiχ
∗
i

χ∗i φi

))
.

Let furthermore λ̃i
def
= ln(λi)/τ = (bi + aii)/τ be the eigenvalue of the continuous-time state transition matrix corre-

sponding to A as in (5). Let the natural frequency fi and the damping ratio ξi be given in (5), and suppose that the
element k of the mode shape ϕi is scaled to unity, i.e. ϕi = Cφi/(Cφi)k [23]. Then,

∆ fi = J fi,A vec(∆A), ∆ξi = Jξi,A vec(∆A), ∆ϕi = Jϕi,AC

[
vec(∆A)
vec(∆C)

]
,

where J fi,A,Jξi,A ∈ R1×n2
, Jϕi,AC ∈ Cr×(n2+rn), with[

J fi,A

Jξi,A

]
def
=

[
J fi,λi

Jξi,λi

] [
<(Jλi,A)
=(Jλi,A)

]
, Jϕi,AC

def
=

1
(Cφi)k

(
Ir −

[
0r,k−1 ϕi 0r,r−k

]) [
CJφi,A φT

i ⊗ Ir

]
,

and [
J fi,λi

Jξi,λi

]
def
=

1
τ|λi|

2 |λ̃i|

[
1/(2π) 0

0 100/|λ̃i|
2

] [
<(λ̃i) =(λ̃i)
−=(λ̃i)2 <(λ̃i)=(λ̃i)

] [
<(λi) =(λi)
−=(λi) <(λi)

]
∈ R2×2.

2Note that JO,H = B + C with the notation of [23].
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Appendix C. Proofs

Appendix C.1. Proofs of Section 5

Proof of Lemma 2. First, define the selection matrices

S ( j,ref) def
= Ip+1 ⊗ [Ir(ref) 0r(ref),r( j) ], S ( j,mov) def

= Ip+1 ⊗ [0r( j),r(ref) Ir( j) ] (C.1)

analogous to (15), which select the reference and moving sensor parts, respectively, from a local subspace matrixH ( j)

or observability matrix O( j) when premultiplied.
Using Lemma 6 for X = H (1), the sensitivity JO(ref),H (1) is obtained analogously to (B.3). Let O(ref) be computed

fromH (1) as described in steps (a)-(d) in Section 3, i.e.

H (1) =
[
U1 U0

] [Σ1 0
0 Σ0

] [
VT

1
VT

0

]
, O(ref) = S (1,ref)U1Σ

1/2
1 .

It follows analogously to (B.3)

∆O(ref) = S (1,ref)∆(U1)Σ1/2
1 + S (1,ref)U1∆(Σ1/2

1 ),

vec(∆O(ref)) = JO(ref),H (1) vec(∆H (1)) (C.2)

with

JO(ref),H (1) =

(
In ⊗

(
1
2

S (1,ref)U1Σ
−1/2
1

))
S 2


(v1 ⊗ u1)T

...
(vn ⊗ un)T

 + (Σ1/2
1 ⊗ S (1,ref)

[
In1 0n1,n2

]
)


B†1C1
...

B†nCn

 , (C.3)

where S 2 is a selection matrix as in (B.3), n1 = (p + 1)(r(ref) + r(1)) and n2 = qr(ref) are the dimensions ofH (1) and Bi

and Ci, i = 1, . . . , n, are defined in Lemma 6 for X = H (1). This proves the first part of Lemma 2.
For the second part of Lemma 2, choose any j ∈ {1, . . . ,Ns} and let the dimensions of H ( j,ref) and H ( j,mov) be

n1 × n3 and n2 × n3, respectively, where n1 = (p + 1)r(ref), n2 = (p + 1)r( j) and n3 = qr(ref). From (17) follows

∆O( j,mov) = ∆(H ( j,mov))H ( j,ref)†O(ref) +H ( j,mov)∆(H ( j,ref)†)O(ref) +H ( j,mov)H ( j,ref)†∆(O(ref))

and in vectorized form

vec(∆O( j,mov)) = ((H ( j,ref)†O(ref))T ⊗ In2 ) vec(∆H ( j,mov)) + (O(ref)T ⊗H ( j,mov)) vec(∆H ( j,ref)†)

+ (H ( j,mov)H ( j,ref)† ⊗ In) vec(∆O(ref)). (C.4)

The required perturbations in this equation are developed now, starting with ∆H ( j,ref)†. The pseudoinverse is defined
with the SVD decomposition

H ( j,ref) =
[
U1 U0

] [Σ1 0
0 Σ0

] [
VT

1
VT

0

]
byH ( j,ref)† = V1Σ−1

1 UT
1 , where Σ1 is of size n × n, as Σ0 is asymptotically 0. Then, a perturbation onH ( j,ref)† writes as

∆H ( j,ref)† = ∆(V1)Σ−1
1 UT

1 − V1Σ−1
1 ∆(Σ1)Σ−1

1 UT
1 + V1Σ−1

1 ∆(UT
1 ). (C.5)

Define Bi and Ci, i = 1, . . . , n, in Lemma 6 for X = H ( j,ref). Then, the vectorization of ∆U1 and ∆V1 is obtained with
Lemma 6 as

vec(∆U1) = (In ⊗ [In1 0n1,n3 ])C, vec(∆V1) = (In ⊗ [0n3,n1 In3 ])C, where C def
=


B†1C1
...

B†nCn


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and with property (B.2) follows vec(∆UT
1 ) = Pn1,n vec(∆U1). The middle term in (C.5) writes as V1Σ−1

1 ∆(Σ1)Σ−1
1 UT

1 =∑n
i=1 σ

−2
i vi ∆σi uT

i . After vectorization and plugging in ∆σi from Lemma 6, it follows from (C.5)

vec(∆H ( j,ref)†) = JH ( j,ref)† vec(∆H ( j,ref)), (C.6)

where

JH ( j,ref)† = (U1Σ−1
1 ⊗ [0n3,n1 In3 ])C −

n∑
i=1

σ−2
i (uivT

i ⊗ viuT
i ) + (In1 ⊗ V1Σ−1

1 )Pn1,n(In ⊗ [In1 0n1,n3 ])C.

The perturbations ∆H ( j,ref) in (C.6) and ∆H ( j,mov) in (C.4) are related to ∆H ( j) by the selection matrices in (C.1) and
it follows

vec(∆H ( j,ref)) = (In3 ⊗ S ( j,ref)) vec(∆H ( j)), vec(∆H ( j,mov)) = (In3 ⊗ S ( j,mov)) vec(∆H ( j)). (C.7)

Then, the second part of Lemma 2 follows from (C.4) by plugging in (C.6) and (C.7) as well as (C.2), with the matrices

J
O j,O(ref) = H ( j,mov)H ( j,ref)† ⊗ In, (C.8)

J
O j,H ( j) = ((H ( j,ref)†O(ref))T ⊗ S ( j,mov)) + (O(ref)T ⊗H ( j,mov))JH ( j,ref)† (In3 ⊗ S ( j,ref)). (C.9)

Proof of Lemma 3. From (19) follows A = K−1L, where

K def
= O(ref)↑TO(ref)↑ +

Ns∑
j=1

O( j,mov)↑TO( j,mov)↑, L def
= O(ref)↑TO(ref)↓ +

Ns∑
j=1

O( j,mov)↑TO( j,mov)↓. (C.10)

Hence, ∆A = −K−1∆KK−1L + K−1∆L = −K−1∆KA +K−1∆L and it follows

vec(∆A) = −(AT ⊗ K−1) vec(∆K) + (In ⊗ K−1) vec(∆L). (C.11)

Let O ∈ R(p+1)r×n be a placeholder for O(ref) or O( j,mov), where r = r(ref) or r = r( j), respectively. In order to obtain
perturbations of the summands in (C.10), the perturbations ∆(O↑TO↑) and ∆(O↑TO↓) need to be evaluated.

Let S (r)
↑

and S (r)
↓

be the selection matrices in dependence of the number of sensors r as defined in (B.4), such that

O↑ = S (r)
↑
O and O↓ = S (r)

↓
O. Then,

∆(O↑TO↑) = ∆(OT )S (r)T
↑
O↑ + O↑T S (r)

↑
∆(O).

and after vectorization and using property (B.2) it follows

vec
(
∆(O↑TO↑)

)
=

(
(O↑T S (r)

↑
⊗ In)Ppr,n + (In ⊗ O

↑T S (r)
↑

)
)

vec(∆O).

Analogously, it holds

vec
(
∆(O↑TO↓)

)
=

(
(O↓T S (r)

↑
⊗ In)Ppr,n + (In ⊗ O

↑T S (r)
↓

)
)

vec(∆O).

Then, from (C.10) and (C.11) the assertion follows for ∆A, where

JA,O(ref) = −(AT ⊗ K−1)
(
(O(ref)↑T S (r(ref))

↑
⊗ In)Ppr(ref),n + (In ⊗ O

(ref)↑T S (r(ref))
↑

)
)

+ (In ⊗ K−1)
(
(O(ref)↓T S (r(ref))

↑
⊗ In)Ppr(ref),n + (In ⊗ O

(ref)↑T S (r(ref))
↓

)
)
, (C.12)

J
A,O

j = −(AT ⊗ K−1)
(
(O( j,mov)↑T S (r( j))

↑
⊗ In)Ppr( j),n + (In ⊗ O

( j,mov)↑T S (r( j))
↑

)
)

+ (In ⊗ K−1)
(
(O( j,mov)↓T S (r( j))

↑
⊗ In)Ppr( j),n + (In ⊗ O

( j,mov)↑T S (r( j))
↓

)
)
. (C.13)
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It remains the uncertainty of C. As C is the first block row of (16), its perturbation can be written as

∆C =


[Ir(ref) 0r(ref),pr(ref) ] ∆O(ref)

[Ir(1) 0r(1),pr(1) ] ∆O(1,mov)

...

[Ir(Ns ) 0r(Ns ),pr(Ns ) ] ∆O(Ns,mov)

 =
[
S C,(ref) S C,1 . . . S C,Ns

]


∆O(ref)

∆O(1,mov)

...

∆O(Ns,mov)

 ,
where

S C,(ref) =


[Ir(ref) 0r(ref),pr(ref) ]

0r(1),(p+1)r(ref)

...
0r(Ns ),(p+1)r(ref)

 , S C,1 =



0r(ref),(p+1)r(1)

[Ir(1) 0r(1),pr(1) ]
0r(2),(p+1)r(1)

...
0r(Ns ),(p+1)r(1)


, . . . , S C,Ns =



0r(ref),(p+1)r(Ns )

0r(1),(p+1)r(Ns )

...
0r(Ns−1),(p+1)r(Ns )

[Ir(Ns ) 0r(Ns ),pr(Ns ) ]


,

and it follows

∆C = S C,(ref) ∆O(ref) +

Ns∑
j=1

S C, j ∆O( j,mov).

Vectorizing this equation leads to the assertion for ∆C with the matrices

JC,O(ref) = In ⊗ S C,(ref), JC,O
j = In ⊗ S C, j. (C.14)

Appendix C.2. Proofs of Section 6
Proof of Proposition 5. From the definition of ϕ̃i follows

∆ϕ̃i = ∆(e−iαi,k )Cφi + e−iαi,k ∆(Cφi)
= −i e−iαi,k Cφi ∆αi,k + e−iαi,k ∆(Cφi).

Consider the phase αi,k, which is obtained from the real and imaginary part of si,k using the arctangent function and it
follows

∆αi,k = ∆
(
arctan(=(si,k)/<(si,k))

)
= t−2

i,k
(
−=(si,k)∆<(si,k) +<(si,k)∆=(si,k)

)
= t−2

i,k

(
−=(si,k)eT

k ∆<(Cφi) +<(si,k)eT
k ∆=(Cφi)

)
= t−2

i,k

[
−=(si,k)eT

k <(si,k)eT
k

] [∆<(Cφi)
∆=(Cφi)

]
.

Plugging this result into the perturbation on ϕ̃i yields

∆ϕ̃i = e−iαi,k
(
−it−2

i,k Cφi

[
−=(si,k)eT

k <(si,k)eT
k

]
+

[
Ir iIr

]) [∆<(Cφi)
∆=(Cφi)

]
.

From

∆(Cφi) = ∆C φi + C ∆φi

= (φT
i ⊗ Ir)vec(∆C) + CJφi,A vec(∆A)

where Jφi,A is defined in Appendix B.3, follows

∆ϕ̃i = e−iαi,k
(
−it−2

i,k Cφi

[
−=(si,k)eT

k <(si,k)eT
k

]
+

[
Ir iIr

]) [C<(Jφi,A) <(φi)T ⊗ Ir

C=(Jφi,A) =(φi)T ⊗ Ir

] [
vec(∆A)
vec(∆C)

]
,

from where the assertion follows.
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[8] E. Reynders, F. Magalhães, G. De Roeck, A. Cunha, Merging strategies for multi-setup operational modal analysis: application to the Luiz I

steel arch bridge, in: Proc. 27th International Modal Analysis Conference, Orlando, FL, USA, 2009.
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