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Abstract

In the last ten years, monitoring the integrity of the civil infrastructure has been an active research topic, including
in connected areas as automatic control. It is common practice to perform damage detection by detecting changes in
the modal parameters between a reference state and the current (possibly damaged) state from measured vibration data.
Subspace methods enjoy some popularity in structural engineering, where large model orders have to be considered.
In the context of detecting changes in the structural properties and the modal parameters linked to them, a subspace-
based fault detection residual has been recently proposed and applied successfully, where the estimation of the modal
parameters in the possibly damaged state is avoided. However, most works assume that the unmeasured ambient
excitation properties during measurements of the structure in the reference and possibly damaged condition stay
constant, which is hardly satisfied by any application. This paper addresses the problem of robustness of such fault
detection methods. It is explained why current algorithms from literature fail when the excitation covariance changes
and how they can be modified. Then, an efficient and fast subspace-based damage detection test is derived that is robust
to changes in the excitation covariance but also to numerical instabilities that can arise easily in the computations.
Three numerical applications show the efficiency of the new approach to better detect and separate different levels of
damage even using a relatively low sample length.

Keywords: Damage detection, Structural vibration monitoring, Ambient excitation, Subspace methods, Hypothesis
testing

1. Introduction

The fault detection problem is related to the detection and diagnosis of changes in the eigenstructure of a linear
dynamical system in many applications. An important example is structural vibration monitoring, where damages
of civil, mechanical or aeronautical structures lead to a change in the eigenstructure of the underlying mechanical
system and thus in the modal parameters (natural frequencies, damping ratios and mode shapes). The excitation of
these systems is ambient and mostly unmeasured. Vibration-based damage detection methods have been developed
extensively in the last 30 years. In [2], an introduction to vibration-based damage identification is given. An overview
of damage identification methods and strategies can be found in [3–5].

Often, damage detection is done by estimating the modal parameters of a structure in a possibly damaged state and
comparing them to estimates from a reference condition, e.g. by using control charts [6–8]. In this context, especially
the natural frequencies are used for a comparison, as they can be reliably identified. However, the automated esti-
mation of modal parameters from a system identification method and matching them from measurements of different
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Nomenclature

R, C sets of real and complex numbers Ri output covariance at lag i
E expectation of a random variable Hp+1,q Hankel matrix of output covariances Ri

N(m,Σ) multivariate Gaussian distribution Op+1, Cq observability, controllability matrix
⊗ Kronecker product θ0, θ system parameter in reference and current state
vec column stacking vectorization operator δθ change in system parameter
† Moore-Penrose pseudoinverse H0, H1 null and alternative hypotheses
(̂·) estimate of a quantity S (θ0) left null space of Op+1 in reference state
A, C system matrices U1 matrix of principal singular vectors ofHp+1,q

xk, yk states and outputs of system ζN , ξN residual vectors computed on N data points
vk, wk state and output noise Jζ , Jξ asymptotic sensitivity of residual vector
Q excitation covariance, cov(vk) Σζ , Σξ asymptotic covariance of residual vector
Q̃ excitation covariance in tested state χ2

N , γ2
N asymptotically χ2-distributed test variables

Q, R matrices in QR decomposition ¯(·) variable for non-parametric test variant

states of the structure for their comparison might require an extensive preprocessing step. Other methods avoid the
system identification step in the possibly damaged state and use e.g. outlier analysis for damage detection [9], Kalman
filter innovations [10, 11] or other data-driven features that are sensitive to changes in the modal parameters. The
methods [12–14] considered in this paper compare a model obtained in the reference state to data from the possibly
damaged state using a subspace-based residual function and a χ2-test built on it for a hypothesis test, without actually
estimating the modal parameters in the tested, possibly damaged states. This approach provides a complete statistical
framework for analyzing a damage residual for both reference and possibly damaged structures. The asymptotic prob-
ability distribution of the considered damage residual for both structural states is given and a statistical hypothesis test
to detect damage in the structure has been proposed.

While the modal parameters of a structure are not afflicted by a change in the ambient excitation statistics, damage
detection tests that avoid the system identification step and use directly the measured vibration data are possibly
perturbed by changes in the excitation covariance. We assume stationary excitation during the measurement of one
data set, while the excitation covariance may change between measurements. The subspace-based damage detection
algorithm [12] takes into account the statistical properties of the ambient excitation in its formulation, but it is shown
that it is not robust to a change in the excitation covariance. In this paper, it is shown how this test can be corrected
easily by recomputing the residual covariance for every tested data set at the expense of an increase in computational
burden and loss of accuracy.

In parallel, a similar subspace-based damage residual that is robust to a changing excitation covariance has been
proposed in [15]. Detecting a change in the structural properties by means of such a residual is possible by a hypothesis
testing procedure involving the norm of the residual pondered by a precise estimate of its covariance as explained in
[12]. In this paper, the statistical framework of [12] is extended to the robust residual. The statistical properties
of the robust residual are analyzed and the corresponding hypothesis test is derived. A fast and numerically stable
computation of the residual covariance and the damage detection test is proposed. The efficiency of this approach and
its robustness to changes in the excitation covariance are demonstrated on three numerical examples and compared to
the damage detection tests from [12–14].

This paper is organized as follows. After presenting the basic principles of statistical subspace-based fault detec-
tion from [12, 13] in Section 2, the impact of a changing ambient excitation covariance between measurements on
the damage detection test is discussed in Section 3. A damage detection test that is robust to a changing excitation
covariance is proposed in Section 4, where a robust residual function and its corresponding hypothesis test are derived.
In Section 5, simplified non-parametric versions of the presented damage detection tests are derived. In Section 6, a
fast and numerically robust computation of the residual covariance and the damage detection test is proposed and in
Section 7 an algorithmic summary of the new robust damage detection test is given. In Section 8, numerical results of
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the proposed algorithms are presented.

2. Background of statistical subspace-based fault detection

In this section, the basic concepts of stochastic subspace-based fault detection from [12, 13] are presented.

2.1. Models and parameters

The use of the state-space representation for output-only vibration-based structural monitoring is well-established,
which corresponds to monitoring the eigenstructure of the discrete time model{

xk+1 = Axk + vk

yk = Cxk + wk
(1)

with the states xk ∈ Rn, the outputs yk ∈ Rr, the state transition matrix A ∈ Rn×n and the observation matrix C ∈ Rr×n,
where r is the number of sensors and n is the system order. The excitation vk is an unmeasured Gaussian white noise
sequence with zero mean and constant covariance matrix Q: E(vkvT

k′ )
def
= Q δ(k−k′), where E(·) denotes the expectation

operator, and wk is the measurement noise.
The collection of eigenvalues and mode shapes (λ, ϕ) comprising the eigenstructure of system (1) results from

det(A − λiI) = 0, Aφi = λiφi, ϕi = Cφi,

where λi and φi are the eigenvalues and eigenvectors of A, and ϕi are the corresponding mode shapes. The eigen-
structure (λ, ϕ) is a canonical parameterization of system (1) and considered as the system parameter θ ∈ C(r+1)n

with

θ
def
=

[
Λ

vec(Φ)

]
, (2)

where Λ = [λ1 . . . λn]T is the vector containing all eigenvalues, Φ = [ϕ1 . . . ϕn] is the matrix whose columns are the
mode shapes and vec denotes the vectorization operator.

2.2. Subspace-based residual vector

In [12, 13] a residual function was proposed to detect changes in the eigenstructure θ from the measurements yk

without actually identifying the eigenstructure in the possibly damaged state. The considered residual is associated
with a covariance-driven output-only subspace identification algorithm. Let G = E(xk+1yT

k ) be the cross-covariance
between the states and the outputs, let Ri = E(ykyT

k−i) = CAi−1G be the theoretic output covariances and

Hp+1,q
def
=


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q


def
= Hank (Ri)

be the theoretic block Hankel matrix. It possesses the well-known factorization property

Hp+1,q = Op+1Cq (3)

into the matrices of observability and controllability

Op+1 =


C

CA
...

CAp

 , Cq =
[
G AG . . . Aq−1G

]
. (4)
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From the observability matrix Op+1, the matrices C and A could be recovered [16] and subsequently the system
parameter θ. However, a residual function based on Op+1 (and Hp+1,q using factorization property (3)) is used in the
following, instead of doing the system identification step.

Denote the system parameter in a reference state as θ0 (nominal model) and in the current state of the system as
θ, as defined in (2). The residual function for a damage detection test from [12, 13] compares the system parameter
θ0 to data measured from the system θ, which requires the identification of θ0 once from data of the reference state
of the structure, while θ is not identified from the currently tested state. From θ0, the observability matrix Op+1(θ0)
is obtained in the modal basis and its left null space S (θ0) is computed, e.g. by a singular value decomposition of
Op+1(θ0), such that

S (θ0)TOp+1(θ0) = 0.

Then, S (θ0) is also the left null space of the block Hankel matrixHp+1,q in the reference state because of factorization
property (3), and the characteristic property of a system in the reference state corresponding to θ = θ0 writes

S (θ0)THp+1,q = 0.

Using measured data (yk)k=1,...,N , a consistent estimate Ĥp+1,q is obtained from the empirical output covariances

R̂i =
1
N

N∑
k=1

ykyT
k−i, Ĥp+1,q = Hank

(
R̂i

)
. (5)

To decide whether the measured data corresponds to θ0 or not, the residual vector ζQ
N with

ζQ
N =

√
N vec

(
S (θ0)T Ĥp+1,q

)
(6)

is defined [12, 13]. The index Q of the residual vector ζQ
N indicates the excitation covariance of the system, for which

the measured data (yk)k=1,...,N are used for the computation of Ĥp+1,q in (5). It is tested if this residual function is
significantly different from zero or not, corresponding to a test between the hypotheses

H0 : θ = θ0 (reference system),
H1 : θ , θ0 (faulty system). (7)

For mathematical convenience the alternative hypothesis H1 can be formulated as θ = θ0 + δθ/
√

N based on the
asymptotic local approach for change detection [17], where δθ is an unknown but fixed change vector. In this formu-
lation emphasis is put on the detection of small changes, and indeed very small changes in the system parameter θ
can be detected with this statistical framework if N is large enough. Also, this framework allows to show asymptotic
normality for N → ∞ of the residual function [12] with

ζQ
N −→

N
(
0,ΣQ

ζ

)
under H0,

N
(
J

Q
ζ δθ,Σ

Q
ζ

)
under H1,

(8)

where JQ
ζ and Σ

Q
ζ are the asymptotic sensitivity and covariance of the residual ζQ

N . The convergence in (8) means that
the residual vector can be approximated by a Gaussian random vector when the number of samples N is large, thus
being completely defined by its mean and covariance. The mean of this asymptotic Gaussian vector is zero in the
reference state and different from zero in the damaged state, and its covariance is the same under both hypotheses. A
decision between the hypotheses H0 and H1 is achieved through a generalized likelihood ratio (GLR) test [12, 17].
Before actually deriving this test, the influence of a change in the excitation covariance Q on the properties of the
residual vector is investigated.

3. Hypothesis test under changing excitation properties

3.1. Impact of changing excitation properties
In practice, the excitation covariance Q may change between different measurement sessions of the system due

to different environmental factors (wind, traffic, . . . ), while the excitation is still assumed to be stationary during one
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measurement. A change in the excitation covariance Q leads to a change in the cross-covariance between states and
outputs G and thus in the Hankel matrix Hp+1,q due to factorization (3)–(4). Subsequently, its estimate Ĥp+1,q and
thus the residual function ζQ

N in (6) are changed, even if the eigenstructure of the system remains unchanged. Thus, the
asymptotic residual’s sensitivity and covariance JQ

ζ and Σ
Q
ζ are indeed dependent on the excitation covariance Q and

change when Q changes. Note however that the system parameters θ0 or θ are independent of Q. Thus, the parametric
observability matrix O(θ0) and its left null space S (θ0) that are obtained in the reference state are also independent of
Q.

Special care must be taken about changing excitation properties between the reference state and the currently tested
state of the structure for the derivation of a hypothesis test. Denote Q as the covariance of the excitation under which
the data in the reference state of the structure was recorded, and denote Q̃ as the excitation covariance in the current
state that is tested for damage. They cannot be measured and are different in general. Thus, consistent estimates
of JQ

ζ and Σ
Q
ζ of the asymptotic sensitivity and covariance of the residual ζQ

N obtained in the reference state might

not correspond to estimates of J Q̃
ζ and Σ

Q̃
ζ related to ζ Q̃

N obtained from another measurement in the tested (possibly
damaged) state.

3.2. Hypothesis test
Now, recall the GLR test for a decision between hypotheses H0 and H1 in (7): let Z be a Gaussian vector and let

pθ0 and pθ be its asymptotic probability density functions under H0 and H1, respectively. Then, the GLR test writes
as

GLR(Z) = −2 log
pθ0 (Z)

supθ∈H1
pθ(Z)

.

First we show that the asymptotic residual distributions of (8) with different excitation covariances Q and Q̃
between reference state (in pθ0 ) and tested state (in pθ), respectively, are incompatible in this GLR test. In this case it
holds

GLR(Z) = ZT (ΣQ
ζ )−1Z + sup

θ∈H1

(
−(Z − J Q̃

ζ δθ)
T (ΣQ̃

ζ )−1(Z − J Q̃
ζ δθ)

)
= ZT (ΣQ

ζ )−1Z − ZT (ΣQ̃
ζ )−1Z + ZT (ΣQ̃

ζ )−1J
Q̃
ζ

(
(J Q̃

ζ )T (ΣQ̃
ζ )−1J

Q̃
ζ

)−1
(J Q̃

ζ )T (ΣQ̃
ζ )−1Z.

If Q , Q̃ the first two terms do not cancel and the GLR expression does not boil down to a χ2-distributed variable,
which would be easy to evaluate. Moreover, the expression demands the residual covariance in both the reference and
tested state. Thus, a comparison of the residual vector to properties of the reference state under a different excitation
covariance is inconvenient in this setting.

However, it is not necessary to use properties of the reference state under a different excitation covariance in
the GLR test. The asymptotic residual distributions under H0 and H1 can both be compared in the tested state
(corresponding to excitation covariance Q̃) in the GLR test for a decision if the newly computed residual ζ Q̃

N follows

distribution N
(
0,ΣQ̃

ζ

)
or N

(
J

Q̃
ζ δθ,Σ

Q̃
ζ

)
. The respective GLR yields

GLR(Z) = ZT (ΣQ̃
ζ )−1Z − ZT (ΣQ̃

ζ )−1Z + ZT (ΣQ̃
ζ )−1J

Q̃
ζ

(
(J Q̃

ζ )T (ΣQ̃
ζ )−1J

Q̃
ζ

)−1
(J Q̃

ζ )T (ΣQ̃
ζ )−1Z

= ZT (ΣQ̃
ζ )−1J

Q̃
ζ

(
(J Q̃

ζ )T (ΣQ̃
ζ )−1J

Q̃
ζ

)−1
(J Q̃

ζ )T (ΣQ̃
ζ )−1Z.

This expression is χ2-distributed with rank(J Q̃
ζ ) degrees of freedom and non-centrality parameter zero under H0 and

δθT Fδθ under H1, where F = (J Q̃
ζ )T (ΣQ̃

ζ )−1J
Q̃
ζ is the Fisher information on θ0 contained in Z. Thus, the evaluation of

such a test expression is easy as it requires only a comparison to a threshold to decide between H0 and H1. Since in
practice only estimates are available, we compute the asymptotically χ2-distributed expression

χ2
N = (ζ Q̃

N )T (̂ΣQ̃
ζ )−1Ĵ

Q̃
ζ

(
(Ĵ Q̃

ζ )T (̂ΣQ̃
ζ )−1Ĵ

Q̃
ζ

)−1
(Ĵ Q̃

ζ )T (̂ΣQ̃
ζ )−1ζ Q̃

N (9)
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as our damage detection test, where Ĵ Q̃
ζ and Σ̂

Q̃
ζ are estimates of the sensitivity and covariance of residual ζ Q̃

N in the
tested state. Their computation is described in Appendix A.

Thus, the damage detection test (9) requires the computation of Ĵ Q̃
ζ and Σ̂

Q̃
ζ in the currently tested state when

the excitation covariance is changing, excluding the estimates in the reference state under the excitation covariance
Q. In the expression (9), the only mention of the reference state θ0 is the left null space S (θ0) that is independent of
the excitation covariance Q or Q̃ in the residual function (6). Then, the residual, its sensitivity and its covariance are
computed on the same data set and are coherent.

3.3. Special case: constant excitation covariance

If the excitation covariance remains the same between the reference and tested states, i.e. Q = Q̃, it holdsJQ
ζ = J

Q̃
ζ

and Σ
Q
ζ = Σ

Q̃
ζ . Only in this case it is sufficient to estimate the residual’s sensitivity and covariance from a measurement

in the reference state, and the index Q or Q̃ can be dropped from all variables. The damage detection test can then be
performed by computing

χ2
N = ζT

N Σ̂−1
ζ Ĵζ

(
ĴT
ζ Σ̂−1

ζ Ĵζ

)−1
ĴT
ζ Σ̂−1

ζ ζN , (10)

which should be compared to a threshold to decide between both hypotheses H0 and H1. This test was derived in
[12, 13], where estimates Ĵζ and Σ̂ζ are only obtained once in the reference state, as the excitation covariance Q was
implicitly assumed constant between different structural states.

However, this strategy cannot be used in the case of changing excitation covariance as shown in the previous sec-
tion. Instead, the computation of the residual’s sensitivity and covariance using new data from the unknown currently
tested state in the GLR test in (9) indeed presents a solution to the problem of changing excitation between measure-
ments. However, the computation of the residual’s covariance is more convenient using data from the reference state
of the structure, where usually long data sets are available in practical applications. Then, better covariance estimates
can be obtained from data in the reference state than on possibly shorter data sets in the currently tested state. More-
over, the computation of the covariance and its inverse is computationally taxing. Hence, it would be favorable to
compute it only once from data of the reference state, instead of recomputing it in every tested structural state. This is
only possible for a residual, whose covariance does not change when Q changes between two measurement sessions.

4. Residual and test robust to change in excitation covariance

A new possibility to compensate a change in the excitation covariance Q between the reference and the possibly
damaged states is the use of a residual function that is robust to these changes. In this section, a hypothesis test on
such a residual is derived.

The subspace-based residual vector in Section 2 is based on the property that the system parameter θ0 agrees with
a Hankel matrix Hp+1,q if and only if Op+1(θ0) and Hp+1,q have the same left null space S (θ0). The same property
holds for the left singular vectors ofHp+1,q: let U1 be the matrix of the left singular vectors obtained from an SVD of
Hp+1,q. Then,Hp+1,q, Op+1(θ0) and U1 define the same subspace. Thus, Op+1(θ0) and U1 have the same left null space
S (θ0), and the characteristic property of the system in the reference state writes as

S (θ0)T U1 = 0.

As U1 is a matrix with orthonormal columns, it can be regarded as independent of the excitation Q, which qualifies
its use for a residual function that is robust to changes in the excitation covariance. Matrix U1 is defined by a unique
SVD to ensure no changing modal basis, e.g. by forcing the first entry in each singular vector to be positive.

The robust residual function is then defined as follows. Let Ĥp+1,q be an estimate of the Hankel matrix from a data
sample (yk)k=1,...,N corresponding to the current, possibly damaged state θ under the unknown excitation covariance Q̃.
From an SVD

Ĥp+1,q =
[
Û1 Û0

] ∆̂1 0
0 ∆̂0

 [V̂T
1

V̂T
0

]
(11)

6



the matrix Û1 is obtained, whose number of columns is the system order n. Note that the singular values in ∆̂0 are
very small and tend to zero for N → ∞. Then, a residual vector that is robust to a change in the excitation covariance
is defined as

ξN
def
=
√

N vec(S (θ0)T Û1), (12)

similarly as in [15]. In the following, the framework of the asymptotic local approach from the conventional damage
detection test [12] described in Section 2.2 is applied for the precise computation of the residual’s covariance and
sensitivity for a correct statistical evaluation. We now prove that the robust residual ξN is asymptotically Gaussian for
N → ∞. Let the SVDs of the Hankel matrix Hp+1,q = U1∆1VT

1 and its estimate Ĥp+1,q in (11) be given. From [18]
and [19, Corollary 1] follows that Û1 is asymptotically Gaussian with

√
N vec

(
Û1 − U1

)
−→ N

(
0,ΣU1

)
,

where ΣU1 = limN→∞ cov(
√

Nvec(Û1)). It follows that the residual ξN is asymptotically Gaussian, with asymptotic
covariance Σξ = (I⊗S T ) ΣU1 (I⊗S ). Analogous to the proof of asymptotic normality of residual ζN [12, 17] it follows

ξN −→

{
N(0,Σξ) under H0
N(Jξ δθ,Σξ) under H1,

where Jξ and Σξ are the asymptotic sensitivity and covariance of the residual ξN and the hypotheses H0 and H1 are
defined in (7). The GLR test to decide between the hypotheses H0 and H1 can thus be achieved through the asymptotic
χ2-test statistics

γ2
N = ξT

N Σ̂−1
ξ Ĵξ

(
ĴT
ξ Σ̂−1

ξ Ĵξ

)−1
ĴT
ξ Σ̂−1

ξ ξN , (13)

which should be compared to a threshold, and where Ĵξ and Σ̂ξ are consistent estimates of Jξ and Σξ. Due to the
construction of the residual function, the asymptotic sensitivity Jξ and covariance Σξ of residual ξN do not depend on
the excitation covariance Q. Their estimates can thus be computed once on data from the reference state and be used
for the damage detection test under a possibly different excitation Q̃. The computation of the new residual sensitivity
and covariance is detailed in Appendix B.

5. Non-parametric damage detection tests

In [14] a non-parametric version of the damage detection test is proposed, where the system parameter θ0 does
not need to be known explicitly in the reference state. Instead of using the null space S (θ0) on the parameterized
observability matrix Op+1(θ0), an empirical (non-parametric) null space S̄ is computed on an estimated block Hankel
matrix Ĥ (reference)

p+1,q from data in the reference state using e.g. an SVD. The characteristic property of a system in the
reference state writes then as

S̄ T Ĥp+1,q = 0.

The resulting non-parametric residual function and damage detection test are then entirely based on the measured
data and no parametric model is used. Like this, the non-parametric test may be more convenient than the parametric
one, as no system identification is necessary in the reference state to retrieve θ0. On the other side, the non-parametric
approach does not allow the choice of modes in the system parameter θ0 that are monitored for a change due to damage
and the whole system response is taken into account.

In this section, the parametric damage detection tests from Sections 3.2, 3.3 and 4 are simplified to be used as
non-parametric tests.

5.1. Test with conventional residual under changing excitation covariance

Based on the residual function presented in Section 2.2 in (6), the non-parametric residual function is consequently
defined as

ζ̄Q
N =

√
N vec

(
S̄ T Ĥp+1,q

)
, (14)
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where Ĥp+1,q is computed on data corresponding to excitation covariance Q. Let Σ
Q
ζ be the asymptotic covariance

of ζ̄Q
N . Analogously to Section 3.2, the residual ζ̄Q

N is asymptotically Gaussian for any Q. Let Q̃ be the excitation

covariance in the currently tested state. Then, a non-parametric test to decide if ζ̄ Q̃
N is significantly different from zero

or not boils down to [14]
χ̄2

N = (ζ̄ Q̃
N )T (̂ΣQ̃

ζ )−1 ζ̄ Q̃
N , (15)

which should be compared to a threshold, and where Σ̂
Q̃
ζ is a consistent estimate of Σ

Q̃
ζ computed on data in the

currently tested state. Its computation follows the covariance computation of the parametric residual function and is
described in Appendix A.1.

5.2. Test with conventional residual under constant excitation covariance
In Section 3.3, the conventional damage detection test was stated under a constant excitation covariance Q = Q̃ in

the currently tested state as in the reference state. In this case, the dependence of the residual and its covariance on Q
can be dropped, and the residual covariance is estimated only once in the reference state as in [14]. The non-parametric
counterpart thus writes analogously to (16) as

χ̄2
N = ζ̄T

N Σ̂−1
ζ ζ̄N , (16)

where ζ̄N is the residual function defined on the empirical null space S̄ in (14), and Σ̂ζ is the estimate of its covariance
computed only once from data in the reference state as the excitation covariance is assumed to be constant for both
the reference and the currently tested states.

5.3. Test with new residual robust to changing excitation
Analogous to Section 5.1, a non-parametric version of the damage detection test robust to excitation changes from

Section 4 can be defined by using an empirical left null space S̄ with S̄ T Ĥp+1,q = 0 in the reference state. The
characteristic property in the reference state writes then as

S̄ T Û1 = 0,

where Û1 is obtained from SVD (11) of a Hankel matrix Ĥp+1,q estimated on a data sample (yk)k=1,...,N . Then, the
non-parametric residual function is defined as

ξ̄N
def
=
√

N vec
(
S̄ T Û1

)
. (17)

Let Σξ be the asymptotic covariance of ξ̄N . Analogous to the parametric residual ξN , the residual ξ̄N is asymptotically
Gaussian and the χ2-test statistics (13) boils down to

γ̄2
N = ξ̄T

N Σ̂−1
ξ ξ̄N , (18)

where Σ̂ξ is a consistent estimate of the asymptotic covariance of ξ̄N . Its computation is only necessary once in the
reference state and is equivalent to the computation in Section Appendix B.1, where S is replaced by S̄ .

6. Numerical considerations

In this section, special care is taken of numerical aspects of the computation of the χ2-test statistics that are used
for the subspace-based damage detection tests. These issues are particularly important for a sensible and numerically
robust implementation of the damage detection algorithms. Possible problems arise mainly due to the covariance
matrix of the residual, which can be big and rank deficient, and hence its inversion in the tests is numerically critical.
These computations appear in (9), (10) and (13), where they are of the form

χ2 = ΥT Σ̂−1 Ĵ
(
ĴT Σ̂−1 Ĵ

)−1
ĴT Σ̂−1 Υ (19)
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or, in the non-parametric version in (15), (16) and (18), where they are of the form

χ2 = ΥT Σ̂−1 Υ, (20)

where Υ is the respective residual vector. Here only the numerical properties of their computation are considered and
all subscripts and superscripts of the involved variables are skipped. Mainly three critical issues arise:

• The covariance matrix Σ̂ is not invertible. This happens when its dimensions are large, while the number of
available samples is not sufficient to ensure full rank. In this case, all matrix inversion operations in (19) and (20) can
be replaced by the pseudoinverse (denoted by †) [20].

• The covariance matrix Σ̂ is extremely large and the computation of its inverse Σ̂−1 or pseudoinverse Σ̂† is
unstable. The solution to this problem lies in the efficient computation of the square root (pseudo-)inverse Σ̂−1/2 of
the covariance matrix Σ̂, such that the relations

Σ̂−1 = (̂Σ−1/2)T Σ̂−1/2, or Σ̂† = (̂Σ−1/2)T Σ̂−1/2 (21)

hold in the full rank and rank deficient cases, respectively, while Σ̂−1 or Σ̂† themselves are not computed. In Appendix
C.1 it is shown how Σ̂−1/2 can be efficiently computed directly from the data. Moreover, the large covariance matrix
Σ̂ is not needed at all in this computation and the dimensions of Σ̂−1/2 are much smaller than those of Σ̂ in the rank
deficient case.

• The direct computation of χ2-tests (19) and (20) is numerically unstable. This is due to the bad conditioning
of the covariance matrix. Matrix Σ̂−1/2 in (21) plays a key role in the stable computation of the test value: a numerically
stable computation of the non-parametric χ2-test (20) can be performed from

χ2 = αTα with α = Σ̂−1/2Υ. (22)

A numerically stable computation of the parametric test (19) was proposed in [21] and starts with the thin QR decom-
position of the product

Σ̂−1/2 Ĵ = QR, (23)

before computing the test from
χ2 = αTα with α = QT Σ̂−1/2Υ. (24)

Proofs and further details are given in Appendix C.2.

7. Summary of the damage detection test robust to changes in the excitation covariance

In this section, the computation details of the new robust damage detection test are summarized for the parametric
test (Section 4) and the simplified non-parametric test (Section 5.3) taking into account the numerical considerations
for the computation of Section 6. In a preprocessing step, the variables for the test are computed in the reference state.
The available data in the reference state is always divided in two parts: one part of some length N for the computation
of the null space and the covariance of the test, and another part as a validation data set for the determination of a
threshold. Then, the damage detection test can be performed sequentially on new data sets from a possibly damaged
state.

7.1. Parametric test
7.1.1. Preprocessing in the reference state

1. Compute Ĥp+1,q on N data samples in (5) and the singular vectors Û1 from the SVD of Ĥp+1,q in (11)
2. Do a system identification and select modes for the system parameter θ0 in (2)
3. Compute parametric observability matrix O(θ0) in (A.4) and obtain null space S (θ0) from SVD of O(θ0)

4. Compute sensitivity matrix Ĵξ =
(
Op+1(θ0)† Û1 ⊗ S (θ0)

)T
O′p+1(θ0) in (B.2) with O′p+1(θ0) from (A.5)–(A.6)

9



5. Divide data of length N into nb blocks of length Nb, compute Ĥ ( j)
p+1,q on each block and fill matrix K in (C.4)

with the columns h j = vec
(
Ĥ

( j)
p+1,q − Ĥp+1,q

)
6. Compute JÛ1

in Proposition 1 (Appendix B.1),A = (I ⊗ S (θ0)T )JÛ1
and Σ̂

−1/2
ξ = (AK)† in (C.5)

7. Perform the thin QR decomposition Σ̂
−1/2
ξ Ĵξ = QR in (23) and compute the product QT Σ̂

−1/2
ξ

8. For each further reference data set,

• compute Ĥp+1,q on data set of some length N, the singular vectors Û1 from the SVD of Ĥp+1,q in (11) and
residual ξN =

√
N vec

(
S (θ0)T Û1

)
in (12),

• compute α = QT Σ̂
−1/2
ξ ξN and χ2-test value γ2

N = αTα (Equations (13) and (24)),

and determine a threshold t from the values γ2
N for a desired type I error.

The output of these preprocessing steps are the matrices S (θ0), the product QT Σ̂
−1/2
ξ and the threshold t for the damage

detection test.

7.1.2. Testing a new data set for damage
1. Compute Ĥp+1,q on data set of some length N, the singular vectors Û1 from the SVD of Ĥp+1,q in (11) and

residual ξN =
√

N vec
(
S (θ0)T Û1

)
in (12)

2. Compute α = QT Σ̂
−1/2
ξ ξN and χ2-test value γ2

N = αTα (Equations (13) and (24))

3. If γ2
N ≤ t: data set is classified as healthy; if γ2

N > t: data set is classified as damaged.

7.2. Non-parametric test

7.2.1. Preprocessing in the reference state
1. Compute Ĥp+1,q on N data samples in (5)

2. Obtain null space S̄ from SVD of Ĥp+1,q (e.g. as S̄ = Û0 in (11))

3. Divide data of length N into nb blocks of length Nb, compute Ĥ ( j)
p+1,q on each block and fill matrix K in (C.4)

with the columns h j = vec
(
Ĥ

( j)
p+1,q − Ĥp+1,q

)
4. Compute JÛ1

in Proposition 1 (Appendix B.1),A = (I ⊗ S̄ T )JÛ1
and Σ̂

−1/2
ξ = (AK)† in (C.5)

5. For each further reference data set,

• compute Ĥp+1,q on data set of some length N, the singular vectors Û1 from the SVD of Ĥp+1,q in (11) and
residual ξ̄N =

√
N vec

(
S̄ T Û1

)
in (17),

• compute α = Σ̂
−1/2
ξ ξ̄N and χ2-test value γ̄2

N = αTα (Equations (18) and (22)),

and determine a threshold t from the values γ̄2
N for a desired type I error.

The output of these preprocessing steps are the matrices S̄ , Σ̂
−1/2
ξ and the threshold t for the damage detection test.

7.2.2. Testing a new data set for damage
1. Compute Ĥp+1,q on data set of some length N, the singular vectors Û1 from the SVD of Ĥp+1,q in (11) and

residual ξ̄N =
√

N vec
(
S̄ T Û1

)
in (17)

2. Compute α = Σ̂
−1/2
ξ ξ̄N and χ2-test value γ̄2

N = αTα (Equations (18) and (22))

3. If γ̄2
N ≤ t: data set is classified as healthy; if γ̄2

N > t: data set is classified as damaged.
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8. Application

The damage detection test derived in this paper that is robust to changes in the ambient excitation covariance is
applied to three numerical examples and compared to the conventional tests to show their performance under different
ambient excitation properties of a system. The χ2-test statistics of the damage detection algorithms are used in their
non-parametric form from Section 5 for simplicity. Three variants were tested:

(a) Conventional test χ̄2
N = ζ̄T

N Σ̂−1
ζ ζ̄N in (16) based on [12, 13], where the residual’s covariance Σ̂ζ is computed only

once in the reference state (cf. also Section 3.3),

(b) Conventional test χ̄2
N = (ζ̄ Q̃

N )T (̂ΣQ̃
ζ )−1 ζ̄ Q̃

N in (15), where the residual’s covariance Σ̂
Q̃
ζ is computed each time in the

tested state under the current excitation covariance Q̃ (cf. also Section 3.2),
(c) New test γ̄2

N = ξ̄T
N Σ̂−1

ξ ξ̄N in (18), where the residual ξ̄N is robust to changes in the ambient excitation covariance

and the residual’s covariance Σ̂ξ is computed only once in the reference state (cf. also Section 4). The correspond-
ing algorithm is summarized in Section 7.2.

8.1. Mass-spring chain

First, a simulation study was made using a mass-spring model of six degrees of freedom (DOF), see Figure 1,
which is observed at all six DOFs. Four cases of Gaussian stationary white noise excitation having a different covari-
ance Q̃ of the system were simulated:

1. Q̃ = I6, represented by © in Figure 2,
2. Q̃ = 42I6 (�),
3. Q̃ = 0.252I6 (×),
4. Q̃ = diag(1, 2, 3, 4, 5, 6)2 (+).

m1 m2 m3 m4 m5
m6

Figure 1: Simulated mass-spring chain.

Using this model, output-only data with N = 25 000 samples was generated to obtain measurements in the refer-
ence state with each of the different excitations. Then, the stiffness of spring 2 was reduced by 5% and a second time
by 10% compared to the reference state, and the simulations were repeated with newly generated excitations.

For each state and excitation covariance, the experiment was repeated 4 times. The resulting χ2-test values of the
three different tests (a)–(c) on this data are plotted in Figures 2(a)–2(c) in the following order: the first 16 test values are
computed in the reference state, the next 16 values with 5% stiffness reduction and the last 16 values with 10% stiffness
reduction. In each of these states, 4 values correspond to one of the 4 different excitation covariances mentioned
above. An empirical threshold (horizontal dashed line) to distinguish between reference states and damaged states is
computed on the mean and variance of the χ2-test values of the 16 reference states.

As can be seen in Figure 2(a), the conventional χ2-test is strongly influenced by a different excitation covariance
and no separation of the χ2-test values between reference and damaged states is possible. For each applied excitation
covariance, the χ2-values increase with the damage, but if the excitation is unknown one cannot distinguish between
the reference and damaged states. Recomputing the residual covariance on data of the currently tested state in Figure
2(b) already leads to a better separation between reference and damaged states, where less than 1/5 of the values in
the damaged states are below the threshold established by the reference states. With the new robust χ2-test in Figure
2(c), a clear separation between reference and damaged states is possible. Note also that the magnitude of damage
is apparently linked to the obtained χ2-test values: Increasing the damage by factor 2 leads to χ2-test values that are
approximately increased to factor 4, which is to be expected.
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(a) Conventional test (16) with the residual’s covariance computed
once in the reference state (Section 3.3).
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(b) Conventional test (15) with the residual’s covariance computed in
the tested state (Section 3.2).
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(c) New test (18) with the residual’s covariance computed once in the
reference state (Section 4).

Figure 2: Comparison of damage detection tests on mass-spring chain (log-scale).

8.2. Truss structure

For the simulation of a truss structure, more realistic conditions were considered. The truss model has 25 DOF
(see Figure 3) and output data was generated at six sensor positions in vertical direction at the lower chord by exciting
the structure at the same positions with white noise. The excitation noise at these six positions was generated with
a diagonal covariance matrix Q, whose diagonal entries were randomly chosen from a uniform distribution in the
interval [1, 36]. 5% white noise were added on the generated outputs.

Damage was simulated by decreasing the stiffness of element 16 in a first step by 10% and in a second step by
20%, leading to a decrease of the structure’s natural frequencies of up to 1.0% and 2.2% compared to the reference
state, respectively. In the reference state, the null space S̄ and the residual covariance Σ̂ζ (for test (a)) and Σ̂ξ (for test
(c)) were computed on 10 data sets to set up the parameters of the damage detection tests.

8.2.1. Robustness to changing excitation covariance
In each structural state, data sets of length N = 25 000 at a sampling frequency of 50 Hz were generated. To

compare the damage detection tests (a)–(c) under changing excitation, 100 new data samples were generated with
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Figure 3: Truss structure with six sensors.

random excitation covariance in the reference and both damaged states, on which the three χ2-tests (a)–(c) were
computed in Figure 4. For each of the compared tests, an empirical threshold was computed from the χ2-values of the
reference state allowing a 5% type I error (horizontal dashed line).
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(a) Conventional test (16) with the residual’s covariance computed
once in the reference state (Section 3.3).
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(b) Conventional test (15) with the residual’s covariance computed in
the tested state (Section 3.2).

10
0

10
1

reference state           10% damage           20% damage  

χ2 −
te

st
 v

al
ue

(c) New test (18) with the residual’s covariance computed once in the
reference state (Section 4).

Figure 4: Comparison of damage detection tests on truss structure (log-scale).

As can be seen in Figures 4(a) and 4(b), no satisfying separation between the reference and damaged state is
possible with the conventional tests. Recomputing the covariance of the residual as in (15) in Figure 4(b) yields already
better results than applying the conventional residual of (16) in Figure 4(a), as expected. However, the computation of
the residual covariance is the numerically and statistically most critical part of the damage detection test. Recomputing
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Σ̂ all the time as in (15) requires a very precise estimation and therefore a sufficiently long data sample length for each
new record. Otherwise, numerical errors on Σ̂ on each new record will deteriorate the algorithm’s efficiency. This is
a major argument towards choosing a reactive algorithm but also requiring only one computation of Σ̂ on a reference
data set. Still some improvement can be seen over the conventional test (16) that is not designed for a changing
excitation. Finally, the new damage detection test in Figure 4(c) manages to separate the reference state from the
damaged states very well. The power of the test, which denotes the percentage of correct classification of data sets in
the damaged condition as damaged, reaches 100% in the second damaged state.

The empirical probability densities of the χ2-test values have been obtained from multiple runs of the damage
detection tests in Figure 5. While the conventional tests (a) and (b) show strongly overlapping distributions, the new
test (c) shows well separated distributions in the three structural states. Also, it is clearly visible that the damage
detection tests show the behavior of the χ2-distribution.

0 threshold 2 3 4

χ2−test values

de
ns

ity

 

 
reference state
10% damage
20% damage

(a) Conventional test (16) with residual’s co-
variance computed once in the reference state.
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(b) Conventional test (15) with the residual’s
covariance computed in the tested state.
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(c) New test (18) with the residual’s covari-
ance computed once in the reference state.

Figure 5: Histograms of χ2-test values from the different damage detection tests on truss structure using data samples of length N = 25 000.

After the preprocessing step in the reference state, the computation time of a χ2 value for a tested data set of
length N = 25 000 was around 0.06 s for both tests (a) and (c), and around 0.8 s for test (b), as the covariance of the
respective residual needs to be evaluated additionally in test (b). Note that the speed of all algorithms is improved by
the numerical considerations in Section 6, in particular the computation of the inverse of the covariance for test (b).

8.2.2. Impact of data length N
From the formulation of the hypotheses H0 and H1 in Section 2.2 it follows that smaller damages can be detected

when the data length N increases, i.e. the damage detection tests get more reactive for longer data sets. This is verified
on the simulated truss for all three algorithms (a)–(c), using N = 100 000 and N = 200 000 samples on the same
damage scenarios as in the previous section. The empirical probability densities of the respective χ2-test values are
presented in Figures 6 and 7, while the corresponding densities using N = 25 000 samples were obtained in Figure 5.

Comparing Figures 5–7, it can be seen that the distributions for the reference and the damaged states of the con-
ventional test in (a) are always overlapping and no complete separation between the structural states can be achieved,
even if the data length is increased, as the test is not designed for a changing excitation covariance. Re-computing the
residual covariance of the conventional test in (b) leads to a better separation between the different structural states
and the damaged states yield χ2-test values that are clearly different from zero. When the data length is increased,
the separation between the structural states improves, and test (b) gets closer to its theoretical efficiency predicted by
the local approach assumption. The new test (c) already achieved a good separation between the structural states for
N = 25 000, and its efficiency also improves with the data length. It yields the most concentrated distributions that are
distinctive for the different structural states. It can be concluded that conventional test (a) is definitely flawed when the
excitation covariance changes between measurements, whereas a very large number of samples is required for test (b)
to be usable for damage detection. In all cases, the new test (c) successfully detects damage at different levels under
excitation changes, even using a reasonably low number of samples. The power of the test for the different sample
lengths is summarized in Table 1.
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(b) Conventional test (15) with the residual’s
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(c) New test (18) with the residual’s covari-
ance computed once in the reference state.

Figure 6: Histograms of χ2-test values from the different damage detection tests on truss structure using data samples of length N = 100 000.
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(a) Conventional test (16) with residual’s co-
variance computed once in the reference state.
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(c) New test (18) with the residual’s covari-
ance computed once in the reference state.

Figure 7: Histograms of χ2-test values from the different damage detection tests on truss structure using data samples of length N = 200 000.

Table 1: Power of the damage detection tests (in %) for different data lengths and 5% type I error.

10% damage on bar 16 20% damage on bar 16
(a) (b) (c) (a) (b) (c)

N = 25 000 14 13 65 55 62 100
N = 100 000 28 32 100 83 99 100
N = 200 000 45 52 100 94 100 100

8.3. Flexural beam

Finally, a flexural beam structure is considered to validate the presented damage detection tests for damages of
varying location, severity and spatial extent. To approach more realistic engineering tasks, a more complex model
with a considerably higher number of DOFs is introduced. The model comprises 40 equally sized finite 2D elastic
beam elements (Figure 8) allowing two translational and one rotational displacements at each node. The beam has a
fixed support on one end and a movable support on the other end, so the system is statically indeterminate and four of
the altogether 123 DOFs of the model are restricted. The beam has invariable cross-sectional and material properties
in the undamaged state. Damage is modeled by a successive reduction of Young’s modulus in selected finite elements,
which has a linear impact on the stiffness at the affected elements. Thereby, damage scenarios with stiffness reductions
of 20% to 50% in steps of 10% have been realized for four different locations of a 1-element sized damage and two
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different locations of a 2-element sized damage along the beam. Note that the 1-element damages with 20% stiffness
reduction lead to less than 0.6% reduction of the natural frequencies and thus have a much smaller impact on the beam
than the damage of the same magnitude in the previous truss example, which is due to the higher complexity and size
of the beam model.

For each structural state, 200 data sets with each N = 100 000 acceleration samples at the six sensor positions
were generated at a sampling frequency of 500 Hz from white noise excitation with a random covariance matrix Q as
in the truss example. 5% white noise were added on the generated outputs.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Figure 8: Flexural beam with element numbers and six sensors.

The damage detection tests (a)–(c) were computed on each of the data sets for the six different damage scenarios.
The power of the test was evaluated for a 5% type I error in the reference state. The results are summarized in
Table 2 where it can be seen that the new damage detection test (c) clearly outperforms the conventional tests for all
considered damage scenarios under changing excitation covariance. Damages of moderate magnitude can be detected
at all considered positions of the beam with the new test, reaching 100% power of the test, while this is not possible
with the conventional tests. Note that the acceptable power of the test for real world applications depends entirely on
the application domain, the false alarms acceptance from the user and the minimal damage extent that one wishes to
detect.

Table 2: Power of the damage detection tests (in %) for different stiffness reductions at different beam elements and 5% type I error.

element 3 element 11 element 21 element 34 elements 10+11 elements 22+23
(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

20% 9 8 19 8 11 23 7 6 9 13 12 27 15 24 95 18 25 87
30% 11 18 66 12 17 79 11 11 27 15 26 91 47 60 100 41 68 100
40% 36 34 100 30 36 100 20 26 88 35 52 100 66 100 100 70 98 100
50% 55 74 100 56 78 100 32 41 100 60 89 100 89 100 100 86 100 100

9. Conclusions

In this paper, a damage detection test robust to changes in the ambient excitation properties has been derived. This
test builds upon the statistical framework proposed in [12] and the residual proposed in [15]. A precise estimate of
the covariance of the robust residual has been derived and it has been shown that the residual enjoys the property of
having a constant covariance even in the context of varying excitation properties. Also, a numerically robust compu-
tation of the damage detection test was proposed, leading to a numerically and statistically robust damage detection
algorithm, unlike previous endeavors. The method has been validated on simulated data, where its effectiveness was
shown. A higher contrast of the damage index values between the reference and damage states was achieved, and
the empirical distributions are better separated and more concentrated (narrower) allowing a clear damage detection
decision. Finally, it has been shown that the new damage detection procedure is also more sensitive under lower
sample length than previously proposed approaches in the same framework. These two advantages show that this new
damage detection test is better suited for being embedded in an automated structural health monitoring system.
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Appendix A. Residual covariance and sensitivity computation for residual ζ

Appendix A.1. Estimation of the residual covariance
The residual covariance Σζ depends on the covariance of the vectorized Hankel matrix

ΣH
def
= lim

N→∞
cov(

√
N vec(Ĥp+1,q)),

where Ĥp+1,q is computed on N data samples. Then, the asymptotic residual covariance follows from the residual
definitions in (6) or (14) as

Σζ = (I ⊗ S T ) ΣH (I ⊗ S ),

where S = S (θ0) for the parametric residual (6) and S = S̄ for the non-parametric residual (14). An estimate of the
residual covariance follows as

Σ̂ζ = (I ⊗ S T ) Σ̂H (I ⊗ S ), (A.1)

where the estimate Σ̂H is obtained from a data sample (yk)k=1,...,N as follows. The available data is separated into
nb blocks having the same length Nb for simplicity, with nb · Nb = N. Each block may be long enough to assume
statistical independence between the blocks. The correlations and the corresponding Hankel matrix

R̂( j)
i =

1
Nb

jNb∑
k=1+( j−1)Nb

ykyT
k−i, Ĥ

( j)
p+1,q = Hank

(
R̂( j)

i

)
are computed for each of the blocks. Then, Ĥp+1,q = 1

nb

∑nb
j=1 Ĥ

( j)
p+1,q and the covariance estimate of the vectorized

Hankel matrix follows from the covariance of the sample mean as

Σ̂H =
Nb

nb − 1

nb∑
j=1

vec
(
Ĥ

( j)
p+1,q − Ĥp+1,q

)
vec

(
Ĥ

( j)
p+1,q − Ĥp+1,q

)T
. (A.2)

Appendix A.2. Residual sensitivity
The asymptotic residual sensitivity Jζ was derived in [12, 13] and yields

Jζ =
(
Op+1(θ0)†Hp+1,q ⊗ S (θ0)

)T
O′p+1(θ0) (A.3)

where Op+1(θ0) is the parametric observability matrix and O′p+1(θ0) is the derivative of the vectorized parametric
observability matrix with respect to θ0. Both matrices are obtained as follows. Based on the fact that all modes appear
in conjugated complex pairs in structural vibration analysis, the system parameter θ0 defined in (2) can be separated
into conjugated complex pairs such that

θ0 =

[
θc
θ∗c

]
,

where ∗ denotes the complex conjugate. In the same way, Φc and ∆c
def
= diag(Λc) are defined such that Φ = [Φc Φ∗c]

and Λ = [ΛT
c Λ∗c

T ]T . Then, define the (real-valued) parametric observability matrix as

Op+1(θ0) def
=

[
<(Õp+1(θc)) =(Õp+1(θc))

]
=


<(Φc) =(Φc)
<(Φc∆c) =(Φc∆c)

...
...

<(Φc∆
p
c ) =(Φc∆

p
c )

 , (A.4)
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where

Õp+1(θc) def
=


Φc

Φc∆c
...

Φc∆
p
c


is the complex-valued observability matrix containing only half of the modes and <(·) and =(·) denote the real and
imaginary part. Define

Λ
(p)
i

def
=

[
1 λi λ2

i . . . λ
p
i

]T
, Λ

′ (p)
i

def
=

[
0 1 2λi . . . pλp−1

i

]T

for 1 ≤ i ≤ m, where m is the number of conjugated complex mode pairs. Then the complex-valued derivative of the
vectorized observability matrix Õp+1(θc) writes

Õ′p+1(θc) def
=

∂ vec(Õp+1(θ̃))

∂θ̃

∣∣∣∣∣∣∣
θ̃=θc

=


Λ
′ (p)
1 ⊗ ϕ1 0 Λ

(p)
1 ⊗ Ir 0

. . .
. . .

0 Λ
′ (p)
m ⊗ ϕm 0 Λ

(p)
m ⊗ Ir

, (A.5)

and the derivative of the real-valued parametric observability matrixO′p+1(θ0) for the residual sensitivity in (A.3) yields

O′p+1(θ0) =

<(Õ′p+1(θc)) −=(Õ′p+1(θc))
=(Õ′p+1(θc)) <(Õ′p+1(θc))

 . (A.6)

A consistent estimate Ĵζ is obtained by replacingHp+1,q by Ĥp+1,q.

Appendix B. Residual covariance and sensitivity computation for new residual ξ

Appendix B.1. Covariance
The covariance of the robust residual depends on the covariance of the singular vectors of the Hankel matrix in the

reference state. The covariance estimate Σ̂H of the vectorized Hankel matrix itself was already obtained in Appendix
A.1. Thus, a possibility to compute the estimate Σ̂ξ is to propagate the covariance of the vectorized Hankel matrix to
the covariance of the singular vectors by a sensitivity analysis [22]. Then it holds

cov(
√

N vec Û1) = JÛ1
Σ̂H J

T
Û1
,

where JÛ1
is the sensitivity of the left singular vectors vec(Û1) with respect to vec(Ĥp+1,q), and it follows

Σ̂ξ = (I ⊗ S T )JÛ1
Σ̂H J

T
Û1

(I ⊗ S ). (B.1)

The computation of JÛ1
was derived in [22] and is numerically costly. A more efficient computation of the required

singular vector sensitivities is summarized in the following proposition.

Proposition 1. Let the SVD of Ĥp+1,q in (11) with singular vectors and values

Û1 =
[
u1 . . . un

]
, V̂1 =

[
v1 . . . vn

]
, ∆̂1 = diag{σ1, . . . , σn}

be given. For j = 1, . . . , n define

K j
def
=
Ĥp+1,q

σ j

I +

[
0

2vT
j

]
−
ĤT

p+1,qĤp+1,q

σ2
j


−1

,

E j
def
=

I + K j

ĤT
p+1,q

σ j
−

[
0

uT
j

] K j

 , F j
def
=

1
σ j

[
vT

j ⊗ (I − u juT
j )

(I − v jvT
j ) ⊗ uT

j

]
.
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Then the sensitivity of the left singular vectors of Ĥp+1,q writes

JÛ1
=


E1F1
...

EnFn

 .
Proof. A detailed proof can be found in [1, 23].

Appendix B.2. Sensitivity
The computation of the sensitivity Jξ is analogous to the computation of the sensitivity Jζ of ζN in (A.3), where

Hp+1,q is replaced by U1 and it follows

Jξ =
(
Op+1(θ0)† U1 ⊗ S (θ0)

)T
O′p+1(θ0), (B.2)

where † denotes the pseudoinverse and ⊗ denotes the Kronecker product. A consistent estimate Ĵξ is obtained by
replacing U1 by Û1.

Appendix C. Numerical considerations

It is the objective to compute the tests (19) and (20), or equivalently the tests for a rank deficient covariance
estimate

χ2 = ΥT Σ̂† Ĵ
(
ĴT Σ̂†Ĵ

)†
ĴT Σ̂† Υ (C.1)

and
χ2 = ΥT Σ̂† Υ. (C.2)

in a numerically stable way. First, an efficient computation of the square root inverse of the covariance matrix estimate
is presented, which takes a key role in the computation of the χ2-tests. Second, results from [21] for a numerically
stable computation of the χ2-test are extended and discussed. Let c = dim(θ) be the dimension of the underlying
system parameter and d = dim(Υ) the dimension of residual vector, such that Ĵ ∈ Rd×c and Σ̂ ∈ Rd×d.

Appendix C.1. Computation of square root inverse of Σ̂

Denote Σ̂−1/2 ∈ Re×d as a square root (pseudo-)inverse of the covariance matrix Σ̂ as defined in (21) for both the
inverse and pseudoinverse of Σ̂. Note that in the full rank case, the dimensions of Σ̂−1/2 yield e ≥ d. In the rank
deficient case, only e ≥ rank(̂Σ) holds and thus e < d is possible. The square root inverse Σ̂−1/2 is needed for a
numerically stable computation of the χ2-test in the subsequent section and can be obtained efficiently as follows. For
all considered damage detection tests, the respective covariance matrix estimates in (A.1) or (B.1) can be factorized
into

Σ̂ = A Σ̂H A
T , (C.3)

where A = (I ⊗ S T ) or A = (I ⊗ S T )JÛ1
, respectively, and the covariance estimate Σ̂H of the vectorized Hankel

matrix is obtained in (A.2). The latter matrix is obtained from cutting the sensor data into nb statistically independent
blocks, on which instances of the Hankel matrix Ĥ ( j)

p+1,q are computed. Define

K
def
=

√
Nb

nb − 1

[
h1 h2 . . . hnb

]
with h j

def
= vec

(
Ĥ

( j)
p+1,q − Ĥp+1,q

)
(C.4)

and the factorization property
Σ̂H = KKT

follows from (A.2). Plugging this result into (C.3) yields

Σ̂ = (AK)(AK)T
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and a square root (pseudo-)inverse of the covariance estimate Σ̂ can be written as

Σ̂−1/2 = (AK)†. (C.5)

This relation provides an efficient way to compute the square root (pseudo-)inverse Σ̂−1/2 of the covariance matrix Σ̂

in case of few available data blocks nb, while completely avoiding the explicit computation of Σ̂. Instead, the matrix
K (having nb columns) is directly filled with the estimates on the data blocks without further computations in (C.4).
Then, in (C.5) the pseudoinverse of matrix AK ∈ Rd×nb is computed and thus the matrix Σ̂−1/2 has e = nb rows. If
nb < d = dim Υ, the computation of Σ̂−1/2 in (C.5) is less costly than computing Σ̂−1/2 directly from Σ̂ ∈ Rd×d.

Moreover, the computation of the (pseudo-)inverse of matrixAK is numerically more stable than the square root
(pseudo-)inverse of the squared matrix Σ̂ = (AK)(AK)T . Hence, using (C.5) may be favorable, even if nb ≥ d.

Appendix C.2. Numerically stable computation of χ2-test
In (22) and (24) numerically robust expressions for the computation of the χ2-tests were given, which hold both

for the tests as stated in (19) and (20) and for the tests in rank deficient case in (C.1) and (C.2), respectively. We
outline their origins and give some comments on conditions for these expressions.

Expression (22) for the non-parametric test follows directly from (21) and provides robustness by only using a
matrix-vector product with Σ̂−1/2.

Expression (24) was proposed in [21] and uses the fact that if the product

Σ̂−1/2 Ĵ is full column rank, (C.6)

then the thin QR decomposition
Σ̂−1/2 Ĵ = QR

yields a square invertible upper triangular matrix R and matrix Q having orthonormal columns with QTQ = I. Then,
from (19) or (C.1) follows with the definition of Σ̂−1/2 in (21)

χ2 = ΥT (̂Σ−1/2)T Σ̂−1/2 Ĵ
(
ĴT (̂Σ−1/2)T Σ̂−1/2Ĵ

)†
ĴT (̂Σ−1/2)T Σ̂−1/2 Υ

= ΥT (̂Σ−1/2)TQR
(
RTQTQR

)†
RTQT Σ̂−1/2Υ

= ΥT (̂Σ−1/2)TQQT Σ̂−1/2Υ

and finally expression (24). In this computation, no further matrix inversions and only numerical stable computations
are used, once Σ̂−1/2 is obtained. Note that condition (C.6) is required for the use of the sensitivity matrix Ĵ in the
χ2-test. In practice, however, it can happen that condition (C.6) is not satisfied. More precisely, if the number of
columns c of matrix Ĵ (c = dim(θ)) yields

c ≥ rank(̂Σ−1/2 Ĵ), (C.7)

condition (C.6) is violated, and Ĵ cancels out in the parametric χ2-test, leading to its non-parametric version: if
condition (C.7) if fulfilled, a rank-revealing QR decomposition with column pivoting [24] of ĴT (̂Σ−1/2)T = QRΠT is
possible, where R is invertible, QTQ = I and Π is a permutation matrix with ΠT Π = ΠΠT = I. Plugging this QR
decomposition into (C.1) yields

χ2 = ΥT (̂Σ−1/2)T ΠRTQT
(
QRΠT ΠRTQT

)†
QRΠT Σ̂−1/2Υ

= ΥT Σ̂−1 Υ,

because (QRRTQT )† = QR−TR−1QT as Q has orthonormal columns and R is invertible. Thus, the parametric χ2-test
boils down to its non-parametric version, if condition (C.7) is fulfilled. This is for example the case, when the number
of parameters in θ is bigger than the dimension of the residual. Also, when the number of parameters in θ is bigger
than the number of data blocks nb for the covariance computation, condition (C.7) is fulfilled due to (C.5). In these
cases, the residual’s sensitivity will disappear in the χ2-test statistics (C.1). Hence, the number of data blocks must
satisfy nb > c as a necessary condition for the use of a sensitivity matrix J . Otherwise, the non-parametric test can
be applied directly.
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