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Abstract In Operational Modal Analysis (OMA) of large structures, ambient vibra-
tion data from multiple non-simultaneously recorded measurement setups is often
needed to be processed. These setups share some sensors in common, while the
others are moved from one setup to the next. Like this detailed mode shapes of the
structure can be obtained, mimicking lots of sensors, while in fact only a few sensors
are used for the measurements. Recently, the “Pre Global Estimation Re-Scaling”
(PreGER) for the Stochastic Subspace Identification (SSI) was proposed to obtain
global modal parameters of the structure. It is a fully automated method that takes
differences in the unmeasured background excitation levels between the setups into
account, merges the data and does the global system identification. Like this, the
different measurement setups can be processed in one step and do not have to be an-
alyzed separately. In this paper, system identification results of the Humber bridge
are presented, which is a challenging example as a big number of setups is available
and special measures need to be taken to avoid numerical explosion of the compu-
tation. The results are compared to the PoSER approach (Post Separate Estimation
Re-Scaling) with data-driven SSI.

1 Introduction

Subspace-based linear system identification methods have been proven efficient for
the identification of the eigenstructure of a linear multivariable system in many ap-
plications. In this paper, the main motivation is output-only structural identification
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in vibration mechanics, of a structure subject to ambient unmeasured vibrations, by
using accelerometer measurements or strain gauges, when several successive data
sets are recorded, with sensors at different locations in the structure. For doing this,
some of the sensors, called the reference sensors, are kept fixed, while the others are
moved. Like this, we mimic a situation in which lots of sensors are available, while
in fact only a few are at hand.

However, there is one unpleasant feature of structural identification of structures
subject to ambient excitation, namely that excitation is typically turbulent in nature
and nonstationary. Like this, the excitation level can change from setup to setup,
which has to be taken into account when merging the sensor data for structural
identification.

Two merging strategies are considered that differ in the order of the normaliza-
tion, identification and merging step: the classical PoSER approach and the previ-
ously presented PreGER approach in [6, 8]. Special care is taken of the PreGER
approach, which is improved to be able to handle a large number of measurement
setups without running into memory problems. The PoSER and the now modular
PreGER approach are tested and compared on data measured on the Humber bridge
in England using 26 different measurement setups with the data-driven SSI algo-
rithm UPC [12, 11].

2 Stochastic Subspace Identification (SSI)

2.1 Single Setup

2.1.1 State Space Model

We consider a linear multi-variable output-only system described by a discrete-time
state space model 

Xk+1 = F Xk +Vk+1

Y (ref)
k = H(ref) Xk

Y (mov)
k = H(mov) Xk

(1)

with

• Xk the state vector at time instant k,
• Y (ref)

k the observed output vector of the reference sensors (which are a subset of
all sensors),

• Y (mov)
k the observed output vector of all the sensors minus the reference sensors

(the remaining sensors),
• H(ref) the observation matrix with respect to the reference sensors,
• H(mov) the observation matrix with respect to the remaining sensors,
• F the state transition matrix,
• Vk the unmeasured stationary Gaussian white noise.
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Let furthermore

• Yk =

(
Y (ref)

k

Y (mov)
k

)
all the observed output at time instant k,

• H =

(
H(ref)

H(mov)

)
the full observation matrix,

• N the number of measurements (k = 1, . . . ,N),
• r the total number of sensors and r(ref) the number of reference sensors.

2.1.2 SSI with Unweighted Principal Component (UPC) Algorithm

The classical reference-based data-driven subspace identification of the eigenstruc-
ture (λ ,φλ ) of the system (1) consists of the following steps for the Unweighted
Principal Component algorithm [11, 12]: The parameters p and q are chosen, nor-
mally as p+1 = q as recommended in [1]. Then, the data matrices

Y +
p+1

def
=


Yq+1 Yq+2

... YN−p

Yq+2 Yq+3
... YN−p+1

...
...

...
...

Yq+p+1 Yq+p+2
... YN

 , and Y −q
def
=


Y (ref)

q Y (ref)
q+1

... Y (ref)
N−p−1

Y (ref)
q−1 Y (ref)

q
... Y (ref)

N−p−2
...

...
...

...

Y (ref)
1 Y (ref)

2
... Y (ref)

N−p−q


(2)

are built and the “subspace matrix”1

Hp+1,q = Y +
p+1Y

−
q

T
(
Y −q Y −q

T
)−1

Y −q (3)

is computed. With the factorization Hp+1,q = Op+1Xq into matrix of observability
and Kalman filter state sequence with

Op+1
def
=


H

HF
HF2

...
HF p

 (4)

the matrices H as the first block row of Op+1 and F from the least squares solution
of

1 As Hp+1,q is usually a very big matrix and difficult to handle, we continue the calculation in
practice with the R part from an RQ-decomposition of the data matrices, see [11] for details. This
will lead to the same results as only the left part of the decomposition of Hp+1,q is needed.
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H

HF
...

HF p−1

F =


HF
HF2

...
HF p


are retrieved. Finally, the eigenstructure (λ ,φλ ) of the system (1) is obtained from

det(F−λ I) = 0, F ϕλ = λ ϕλ , φλ = Hϕλ .

In the following, the subscripts of the matrices Hp+1,q, Y +
p+1, Y −q and Op+1 are

skipped for simplicity.

2.2 Multiple Setups

Instead of a single record for the output (Yk) of the system (1), Ns records(
Y (1,ref)

k

Y (1,mov)
k

)
︸ ︷︷ ︸

Record 1

(
Y (2,ref)

k

Y (2,mov)
k

)
︸ ︷︷ ︸

Record 2

. . .

(
Y (Ns,ref)

k

Y (Ns,mov)
k

)
︸ ︷︷ ︸

Record Ns

(5)

are now available collected successively. Each record j contains data Y ( j,ref)
k from a

fixed reference sensor pool, and data Y ( j,mov)
k from a moving sensor pool. To each

record j = 1, . . . ,Ns corresponds a state-space realization in the form
X ( j)

k+1 = F X ( j)
k +V ( j)

k+1

Y ( j,ref)
k = H(ref) X ( j)

k (reference pool)
Y ( j,mov)

k = H( j,mov) X ( j)
k (sensor pool no j)

(6)

with a single state transition matrix F .
Note that the unmeasured excitation V ( j) can be different for each setup j as the

environmental conditions can slightly change between the measurements. However,
during each setup j the noise V ( j) is assumed to be stationary. Note also that the
observation matrix H(ref) is independent of the specific measurement setup if the
reference sensors are the same throughout all measurements j = 1, . . . ,Ns.

For each setup j we obtain a “local” subspace matrix

H ( j) = Y +
( j)Y

−
( j)

T
(
Y −( j)Y

−
( j)

T
)−1

Y −( j) (7)

according to equations (2)-(3), where Y +
( j) is filled with data from all the sensors

and Y −
( j) with data from the reference sensors of this setup (see Equation (2)). The

question is now how to adapt the subspace identification from Section 2.1 to
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• merge the data from the multiple setups j = 1, . . . ,Ns to obtain global modal
parameters (natural frequencies, damping ratios, mode shapes), and to

• normalize or re-scale the data from the multiple setups as the background exci-
tation may differ from setup to setup.

In the following section we present two approaches for this problem: the common
practice approach PoSER that processes all the setups separately and merges them
at the end, and the recently generalized approach PreGER, that processes all the
setups together.

3 Merging Strategies

3.1 Post Separate Estimation Re-Scaling (PoSER)

In this work, reference based SSI-DATA algorithm [12] is used for system iden-
tification as PoSER approach. It involves two main steps; processing and modal
parameter identification of each setup separately and then merging the modal data.
The first step consists of (i) assembly of and QR factorization of data block Hankel
matrix (ii) SVD of projection matrix (iii) calculation of system matrices (iv) com-
putation of modal parameters. In the second step, the modal data from each setup
are merged to get the global values of system. The values of all setups are averaged
to get the natural frequencies and damping ratios of whole structure.

Every setup of simultaneously measured channels yields after identification a
part of the global mode shape. These parts are glued together with the aid of the
reference sensors, common to all setups. Least squares approximation is used to
determine the scaling factor of a certain mode between two setups. The scaling
factor is different from one if the (unknown) excitation changes from one setup to
another, which is generally the case. The whole procedure is summarized in Figure
1. For large structures having a huge number of test setups, this approach is time
consuming as many stabilization diagrams have to be analyzed. In most of the cases,

H(1)

H(2)

H(Ns)

φ(1)

φ(2)

φ(Ns)

...
...

re-scaling

re-scaling

re-scaling

identification

identification

identification

φ(all)

Figure 1: Merging partial mode shape estimates φ(j), j = 1, ..., Ns into a global mode shape estimate φ(all) in
the PoSER approach.

3.2 PreGER approach with UPC

Another merging approach that was described for covariance-driven SSI in [2, 3, 1] makes use of a factorization of
the Hankel matrix of each patch and normalizes them with a common right factor to introduce the same excitation
level to all the setups. We adapt this idea to the data-driven SSI with the UPC algorithm. We also call this method
PreGER (Pre Global Estimation Re-scaling).

For each setup j = 1, . . . , Ns we build the weighted Hankel matrix (7) that has the factorization property H(j) =
O(j)X (j). In order to merge the data we first take the different excitation levels of each setup into account, which
are present in the Kalman filter state sequence X (j) since the matrix of observability is only dependent of the
observation matrix H(j) and state matrix F that are not affected. In the first step, all the Hankel matrices H(j) are
re-scaled with a common Kalman filter state sequence X (j∗) of one fixed setup j∗, then the resulting matrices are
merged and a global modal parameter estimation is finally done on the merged matrix.

H(1)

H(2)

H(Ns)

H̄(1)

H̄(2)

H̄(Ns)

...
...

re-scaling

re-scaling

re-scaling
interleaving identification

H̄(all) φ(all)

Figure 2: Merging Hankel matrices of each setup to obtain a global Hankel matrix and global mode shape
estimate φ(all) in the PreGER approach.

In detail, we separate the weighted Hankel matrices H(j) into matrices H(j,ref) and H(j,mov) by taking the appro-
priate rows of H(j) that correspond to the reference resp. moving sensor data from Y+

(j,ref) resp. Y+
(j,mov), see also

Equation (7). As the weighted Hankel matrices fulfill the factorization property H(j) = O(j)X (j) we now have

H(j,ref) = O(ref)X (j), H(j,mov) = O(j,mov)X (j),

Fig. 1 Merging partial mode shape estimates φ ( j), j = 1, ...,Ns into a global mode shape estimate
φ (all) in the PoSER approach.



6 Michael Döhler, Bijaya Jaishi, Laurent Mevel, and James M.W. Brownjohn

all modes are not well excited in all setups and mode pairing between different
setups is difficult.

3.2 Pre Global Estimation Re-Scaling (PreGER)

3.2.1 General PreGER Merging Strategy

The PreGER merging approach was introduced in [9, 10] and recently generalized
[6, 8]. It makes use of a factorization of the subspace matrix of each setup into
observability and some other matrix on the right side, and normalizes them with a
common right factor to introduce the same excitation factor to all the setups. In this
work, it is simplified and adapted to a large number of setups.

For each setup j = 1, . . . ,Ns the subspace matrix (7) is built that has the factor-
ization property H ( j) = O( j)X ( j). In order to merge the data, first the different
excitation factors of each setup are taken into account, which are present in the
Kalman filter state sequence X ( j) since the matrix of observability is only depen-
dent of the observation matrix H( j) and state matrix F that are not affected. In the
first step, all the subspace matrices H ( j) are re-scaled with a common Kalman filter
state sequence X ( j∗) of one fixed setup j∗, then the resulting matrices are merged
and a global modal parameter estimation is finally done on the merged matrix.

H(1)

H(2)

H(Ns)

φ(1)

φ(2)

φ(Ns)

...
...

re-scaling

re-scaling

re-scaling

identification

identification

identification

φ(all)

Figure 1: Merging partial mode shape estimates φ(j), j = 1, ..., Ns into a global mode shape estimate φ(all) in
the PoSER approach.

3.2 PreGER approach with UPC

Another merging approach that was described for covariance-driven SSI in [2, 3, 1] makes use of a factorization of
the Hankel matrix of each patch and normalizes them with a common right factor to introduce the same excitation
level to all the setups. We adapt this idea to the data-driven SSI with the UPC algorithm. We also call this method
PreGER (Pre Global Estimation Re-scaling).

For each setup j = 1, . . . , Ns we build the weighted Hankel matrix (7) that has the factorization property H(j) =
O(j)X (j). In order to merge the data we first take the different excitation levels of each setup into account, which
are present in the Kalman filter state sequence X (j) since the matrix of observability is only dependent of the
observation matrix H(j) and state matrix F that are not affected. In the first step, all the Hankel matrices H(j) are
re-scaled with a common Kalman filter state sequence X (j∗) of one fixed setup j∗, then the resulting matrices are
merged and a global modal parameter estimation is finally done on the merged matrix.

H(1)

H(2)

H(Ns)

H̄(1)

H̄(2)

H̄(Ns)

...
...

re-scaling

re-scaling

re-scaling
interleaving identification
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Figure 2: Merging Hankel matrices of each setup to obtain a global Hankel matrix and global mode shape
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In detail, we separate the weighted Hankel matrices H(j) into matrices H(j,ref) and H(j,mov) by taking the appro-
priate rows of H(j) that correspond to the reference resp. moving sensor data from Y+

(j,ref) resp. Y+
(j,mov), see also

Equation (7). As the weighted Hankel matrices fulfill the factorization property H(j) = O(j)X (j) we now have

H(j,ref) = O(ref)X (j), H(j,mov) = O(j,mov)X (j),

Fig. 2 Merging subspace matrices of each setup to obtain a global subspace matrix and global
mode shape estimate φ (all) in the PreGER approach from [6, 8].

In detail (see also [6]), the subspace matrices H ( j) are separated into matrices
H ( j,ref) and H ( j,mov) by taking the appropriate rows of H ( j) that correspond to the
reference resp. moving sensor data from Y +

( j,ref) resp. Y +
( j,mov). Then, the matrices

H ( j,ref), j = 1, . . . ,Ns are juxtaposed to

H (all,ref) =
(
H (1,ref) H (2,ref) . . . H (Ns,ref)

)
and with the help of an SVD this matrix is decomposed to

H (all,ref) = O(ref) (X (1) X (2) . . . X (Ns)
)
, (8)
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from where the matrices X ( j) and the observability matrix with respect to the ref-
erence sensors O(ref) are obtained. One of the setups j∗ ∈ {1, . . . ,Ns} is chosen and
the matrices H ( j,mov) are rescaled to

H̄ ( j,mov) = H ( j,mov) X ( j)†
X ( j∗),

where † denotes the pseudoinverse. In the last step the block rows of the matri-
ces H̄ ( j,mov), j = 1, . . . ,Ns, and the matrix H ( j∗,ref) are interleaved, to obtain the
merged matrix H̄ (all) with the factorization property

H̄ (all) = O(all) X ( j∗) with O(all) =


H(all)

H(all)F
H(all)F2

...
H(all)F p

 and H(all) =


H(ref)

H(1,mov)

H(2,mov)

...
H(Ns,mov)

 .

(9)
On this global subspace matrix the subspace system identification can be performed
to obtain the global modal parameters.

3.2.2 Modular PreGER Merging Strategy

The PreGER approach is now modified to handle a large number of setups, as in such
a case the global subspace matrix H̄ (all) can get very big, which can pose memory
problems. Also, an SVD of H̄ (all) has to be done to obtain the observability matrix
O(all), and from this matrix the state transition matrix F is obtained from a least
squares solution. These are operations involving large matrices in the case of many
setups and memory problems can arise again.

In order to circumvent these problems, the matrix O(all) is built directly instead of
H̄ (all), similar to the modular merging approach in [7], so that no further SVD has
to be done. With O( j,mov) def

= H ( j,mov) X ( j)†
and Equation (9), O(all) can also be

built directly by interleaving the block rows of the matrices O( j,mov), j = 1, . . . ,Ns,
and the matrix O(ref). From H ( j,ref) = O(ref) X ( j) the relation

O( j,mov) = H ( j,mov) X ( j)†
= H ( j,mov) H ( j,ref)†

O(ref)

follows and hence in Equation (8) only the matrix O(ref) is needed. Then, the SSI
using the modular PreGER merging – only involving small matrices coming from
single setups if necessary – consists of the following steps:

• Get the matrix O(ref) from the SVD of
(
H (1,ref) H (2,ref) . . . H (Ns,ref)

)
. If the

latter matrix is too big, an iterative thin RQ decomposition can be done prior
to the SVD, that involves only one matrix H ( j,ref) in one step. See also [7] for
details.

• Build the matrices O( j,mov) = H ( j,mov) H ( j,ref)†
O(ref), j = 1, . . . ,Ns
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• Solve the least squares problem for the state transition matrix F either from O(all)

(which results from interleaving O( j,mov), j = 1, . . . ,Ns, and O(ref)) or iteratively
by directly using the matrices O( j,mov), j = 1, . . . ,Ns, and O(ref) one after each
other, see also [7] for details. Get the global observation matrix H(all) from the
first block row of O( j,mov), j = 1, . . . ,Ns, and O(ref).

• Get the natural frequencies, damping ratios and mode shapes from F and H(all).

This modular PreGER approach is summarized in Figure 3.

H(1)

H(2)

H(Ns)

O(ref), O(1,mov)

O(2,mov)

O(Ns,mov)

...
...

SVD + re-scaling

SVD + re-scaling

SVD + re-scaling

identificationiterative LQ
F , H (all) φ(all)

Fig. 3 Merging subspace matrices of each setup to obtain a global subspace matrix and global
mode shape estimate φ (all) in the modular PreGER approach.

4 Analysis of Humber Bridge

4.1 Bridge Description and Ambient Vibration Test

The Humber Bridge (Figure 4), which was opened in July 1981, has a main span
of 1410 m with side spans of 280 m and 530 m. The spans comprise 124 units of
18.1 m long 4.5 m deep 140 prefabricated sections 28.5 m wide including two 3 m
walkways. The top of the box section constitutes an orthotropic plate on which

Fig. 4 Views of Humber Bridge from North and South.
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mastic asphalt surfacing is laid, and the sections have four internal bulkheads. At
the end of each span there is a pair of A-frame rocker bearings that provide restraint
in three degrees of freedom. The slip-formed reinforced concrete towers rise 155.5
above the caisson foundations and carry the two main cables which have a sag of
115.5 m. These cables each have sectional area of 0.29 m2 and consist of almost
15,000 5 mm 1.54 kN/mm2 UTS wires grouped in strands.

The bridge was previously tested in July 1985 [2]. The testing was motivated
by a requirement to validate FE procedures for suspensions bridges. The 1985 test-
ing used only three accelerometers, several km of cables, an analog tape recorder
and a two-channel spectrum analyzer and it was possible to identify over 100 vi-
bration modes of the main span, side spans and towers up to a frequency of 2 Hz.
After 23 years, the original signals and resulting digital mode shapes were no longer
available, just the values in published papers and reports. Because of the quality un-
certainties and lack of digital data for the EPSRC project, a retest of the bridge was
necessary.

The current test was conducted during the week 14th-18th in July 2008 as part of
EPSRC funded research project. To avoid lengthy post-processing of data a differ-
ent strategy was required for the system identification, making use of autonomous
recorders with precise timing of GPS-synchronized clocks. The system for using
autonomous recorders pioneered by researchers at FEUP in Portugal [4, 5] was
adopted and a team from FEUP brought their recorders and assisted in the test-
ing and post-processing. Between FEUP and University of Sheffield ten GEOSIG
recorders were available. These recorders used either internal force balance ac-
celerometers, external Guralp CMG5 accelerometers of a triaxial arrangement of
QA750 accelerometers.

With up to five days of measurement available with a maximum of 10 hours per
day due to recorder batteries, an optimal plan was formulated that involved separate
setups to cover 76 positions. Sensor locations for one of the setup is shown in Fig-
ure 5, in each of these two pairs of triaxial recorders would be maintained at two
permanent reference locations, leaving the remaining three pairs to rove either deck
or in East/West tower pylons. Each measurement generated one hour of 30-channel
(10 in each direction) acceleration records, in four 15-minute segments. The entire
day of measurements was pre-programmed into each recorder, leaving 10-minute
periods between measurements to move the six rovers. Several cross-calibration
measurements were made to test the synchronization and relative calibrations of the
recorders by positioning them together. For side-span measurements an extra pair
of recorders was kept as a side-span reference and on the final day, a single pair of
recorders was kept in the main span with a pair of recorder left on the top of each

Fig. 5 Sensor locations for setup 24: sidespan measurement.
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tower (one on each pylon) and the remaining pairs roved in the tower. The details of
test procedure can be found in [3].

4.2 Preprocessing of the Data

In this work, only vertical direction data from 26 different setups are processed. The
analysis of the experimental data involved initial preprocessing operations of trend
removal, low-pass filtering and resampling, considering that the range of frequencies
of interest is rather low, of the order of 1 Hz, compared to the original sampling rate
of 100 Hz.

4.3 PoSER Approach

Several values for SSI parameters are tried and the following parameters are se-
lected:

• Expected system order: 45
• Model order range: 2, 4, 6, 8, . . . , 100
• References: 4 reference channels

The set of 18 modes that had been extracted from the data in the frequency range of
interest [0-1 Hz] is shown in Figure 6. These modes can be characterized as:

• Vertical bending modes 1, 3 and 4 possesses symmetry in all three spans.
• Vertical modes 5, 8 and 11 and torsional mode 10 possesses anti-symmetry in

main span and symmetry in long side span.
• Vertical modes 6, 9, 12, 15, 18 and torsional mode 13 have symmetry in main

span.
• Vertical mode 2 possesses symmetry with respect to sides spans and anti-

symmetry in main span.
• Vertical mode 7 possesses symmetry with respect to main span and long side

span.
• Vertical modes 14 and 17 and torsional mode 16 possesses anti-symmetry in

main span.

The shapes of the 6th vertical mode is not found perfect due to difficulty in an-
alyzing the very closely spaced mode in the stabilization diagram. The extracted
modal parameters are in good agreement with other methods that are reported in [3]
except the values of the damping ratios.
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mode 1 - 0.116Hz - 3.1% mode 2 - 0.152Hz - 6.4% mode 3 - 0.172Hz - 3.9%

mode 4 - 0.215Hz - 2.6% mode 5 - 0.239Hz - 1.4% mode 6 - 0.305Hz - 2.1%

mode 7 - 0.312Hz - 1.2% mode 8 - 0.381Hz - 1.2% mode 9 - 0.462Hz - 0.9%

mode 10 - 0.480Hz - 0.7% mode 11 - 0.537Hz - 0.9% mode 12 - 0.625Hz - 0.7%

mode 13 - 0.647Hz - 0.6% mode 14 - 0.716Hz - 0.7% mode 15 - 0.808Hz - 1.0%

mode 16 - 0.850Hz - 0.7% mode 17 - 0.909Hz - 0.6% mode 18 - 0.987Hz - 0.8%

Fig. 6 Modes identified with data-driven SSI from the PoSER approach.

4.4 PreGER Approach

For the PreGER merging approach, all 26 setups were processed together and spe-
cial care was taken of the presence of the data from the different setups and the
resulting partial subspace matrices in memory only when they were needed for the
merging procedure described in Section 3.2.2. For the analysis p+1 = q = 50 was
selected to build the subspace matrices, and having 4 reference sensors available the
maximal model order was 200. The stabilization diagram obtained from the global
merged subspace matrix is presented in Figure 8, from where the modes where cho-
sen.
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All the identified mode shapes can be seen in Figure 7. They correspond very
well to the results of the PoSER approach, as well as the frequencies and damping
ratios. However, the very closely spaced modes 6 and 7 are well separated now.

mode 1 - 0.116Hz - 2.8% mode 2 - 0.152Hz - 7.8% mode 3 - 0.174Hz - 5.6%

mode 4 - 0.215Hz - 2.5% mode 5 - 0.239Hz - 1.4% mode 6 - 0.309Hz - 1.6%

mode 7 - 0.312Hz - 1.6% mode 8 - 0.381Hz - 1.4% mode 9 - 0.462Hz - 1.0%

mode 10 - 0.481Hz - 1.0% mode 11 - 0.537Hz - 1.0% mode 12 - 0.625Hz - 0.9%

mode 13 - 0.645Hz - 1.4% mode 14 - 0.712Hz - 1.0% mode 15 - 0.808Hz - 0.9%

mode 16 - 0.845Hz - 1.1% mode 17 - 0.908Hz - 0.8% mode 18 - 0.985Hz - 2.3%

Fig. 7 Modes identified with data-driven SSI from the modular PreGER approach.
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Fig. 8 Stabilization diagram containing the natural frequencies of Humber bridge from the
PreGER approach.

5 Summary of Results and Comparison

Table 1 provides a comparative overview of the natural frequencies and damping ra-
tios estimated with the PoSER and PreGER merging approach using the data-driven
SSI-cov/ref method. For a comparison of the mode shapes the Modal Assurance
Criterion (MAC) of the real parts of the mode shapes between PoSER and PreGER
approach is shown in Figure 9. The following observations can be made:

PoSER PreGER
# f (in Hz) d (in %) f (in Hz) d (in %)
1 0.116 3.1 0.116 2.8
2 0.152 6.4 0.152 7.8
3 0.172 3.9 0.174 5.6
4 0.215 2.6 0.215 2.5
5 0.239 1.4 0.239 1.4
6 0.305 2.1 0.309 1.6
7 0.312 1.2 0.312 1.6
8 0.381 1.2 0.381 1.4
9 0.462 0.9 0.462 1.0

10 0.480 0.7 0.481 1.0
11 0.537 0.9 0.537 1.0
12 0.625 0.7 0.625 0.9
13 0.647 0.6 0.645 1.4
14 0.716 0.7 0.712 1.0
15 0.808 1.0 0.808 0.9
16 0.850 0.7 0.845 1.1
17 0.909 0.6 0.908 0.8
18 0.987 0.8 0.985 2.3

Table 1 An overview of the estimated natural frequencies f and damping ratios d obtained from
the different merging strategies using data-driven SSI.
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• The differences in natural frequencies for the PoSER and the PreGER approach
are less than 1 %.

• For the damping ratios, the differences between PoSER and PreGER estimates
are larger but still not significant considering the large standard deviations on the
estimates. In general, the PreGER estimates are slightly larger than the PoSER
estimate, which might be due to the fact, that the natural frequencies in each setup
are slightly different. Then, the resulting frequency for each mode obtained by
the PreGER approach is associated to a higher damping ratio, consequence from
the merging of overlapping frequencies.

• The MAC values between most of the mode shapes of the different merging
approaches are very close to one, meaning that the identified mode shapes are
very similar. Only mode shape 6, that could not be identified clearly in the PoSER
approach, shows a big difference. Also mode shape 11 shows some difference,
due to some noise in the mode shape estimate of the PoSER approach in the side
span of the bridge, that is not present in the PreGER approach.

Fig. 9 MAC values between the real parts of the mode shapes obtained by PoSER and PreGER
approach.

6 Conclusion

In this work, the PreGER merging approach for Stochastic Subspace Identification
was further modified to handle a large number of measurement setups containing
moving sensors and a set of fixed reference sensors. It is adapted to be completely
modular and hence it has the same memory requirements as the PoSER merging
approach.
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Both PoSER and PreGER approaches offer comparable qualitative modal iden-
tification results on the Humber bridge, whereas the PreGER approach has the ad-
vantage of also separating closely spaced modes properly. The modal identification
results compare well with previously published results from different identification
algorithms in [3], showing also the feasibility of the new PreGER merging approach.
In addition, the PreGER merging approach may have the following preferences:

• theoretically sound, taking the difference in the excitation already in the model-
ing into account;

• just one stabilization diagram has to be analyzed without the need of matching
of modes between measurement setups.
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3. Brownjohn, J., Magalhães, F., Caetano, E., Cunha, A.: Ambient vibration re-testing and op-
erational modal analysis of the Humber Bridge. Engineering Structures 32(8), 2003–2018
(2010)

4. Cunha, A., Caetano, E., Delgado, R.: Dynamic tests on large cable-stayed bridge. Journal of
Bridge Engineering 6(1), 54–62 (2001)
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7. Döhler, M., Mevel, L.: Modular subspace-based system identification and damage detection
on large structures. In: Proceedings of the 34th IABSE Symposium. Venice, Italy (2010)
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