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ABSTRACT: In Operational Modal Analysis, the modal paramet@ratural frequencie:
damping ratios and mode shapes) obtained from 8stichSubspace Identification (SSI) of a
structure, are afflicted with statistical uncertgir-or evaluating the quality of the obtained re-
sults it is essential to know the appropriate ateriice intervals of these figures. In this paper
we present algorithms that automatically compugedbnfidence intervals of modal parameters
obtained from covariance-driven and data-driven &3 structure based on vibration meas-
urements. These algorithms are adapted to hantiefrden different measurements of a struc-
ture, where roving sensors are moved from one meamnt setup to another, while some ref-
erence sensors stay fixed throughout all the measnits. In this case, the different ambient
excitations of the structure between the measureneve to be taken into account. With these
new algorithms, confidence intervals of the modalameters of some relevant industrial ex-
ample are computed.

1 INTRODUCTION

Subspace-based system identification methods hese proven efficient for the identification
of the eigenstructure of linear multivariable sys¢e An important application of these methods
is Operational Modal Analysis, where the modal paagers (frequencies, damping ratios and
mode shapes) are identified of mechanical, civiberonautical structures subject to uncon-
trolled, unmeasured and nonstationary excitation.

To obtain vibration measurements at many coordinate structure with only few sensors,
it is common practice to use multiple sensor sefapthe measurements. For theselti-setup
measuremenissome of the sensors, the so-called referenceisgrstay fixed throughout all
the setups, while the other sensors are moved $einp to setup. By merging in some way the
corresponding data while taking into account pdedilifferent ambient excitations between the
measurements, this allows to perform modal idexdifon as if there was a large number of
sensors. A global merging approach was proposétfavel et al. 2002a, b), where the data
from the different setups is normalized and meffiyst] followed by a global system identifica-
tion step. Recently, this approach was generaliaeadlarge range of stochastic subspace algo-
rithms in (Dohler and Mevel 2010, 2011b), includicgvariance-driven and data-driven algo-
rithms such as the Unweighted Principal Compon&gardghm (UPC, Van Overschee and De
Moor 1996).

The obtained modal parameters are afflicted witlisttcal uncertainty due to measurement
noise, nonstationary and colored excitation noisedel order truncation and many other
sources. To evaluate the quality of the estimatedahparameters, it is thus essential to quan-
tify this uncertainty. In (Reynders et al. 2008)istwas done for the modal parameter estima-
tion with covariance-driven SSI. In (Dohler et 2011), the uncertainty of modal parameters
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estimated with the data-driven UPC algorithm wampated. In this paper, the uncertainty
guantification is generalized to stochastic subspdentification using multi-setup measure-
ments.

2 MULTI-SETUP STOCHASTIC SUBSPACE IDENTIFICATION

2.1 Models and Parameters

The behaviour of a mechanical system is assumdxk tdescribed by a stationary linear dy-
namical system

MZ(t)+CZ()+ KZ(9=¥), Y= LA}, (1)

wheret denotes continous tim®], C andK are the mass, damping and stiffness matrices; high
dimensional vectoZ collects the displacements of the degrees of &needf the structure, the
non-measured external foreemodelled as non-stationary Gaussian white nolse neasur-
ments are collected in the vec¥band matrix indicates the sensor locations.

The eigenstructure of (1) with the mogeand mode shapes, is a solution of

det@’M +uC+K)=0, @*M+uC+K), =0, ¢, = Ly,. (2)
Sampling model (1) at some rate $ields the discrete model in state-space form
X = FX Vi, %= HX,, 3
whose eigenstructure is given by
detF -A1)=0, F-Al =0, ¢,=Hg,. 4

Then, the eigenstructure of the continous systénis(lelated to the eigenstructure of the dis-
crete system (3) by

=1, 9,=¢,. (®)

The collection of modes and mode shapkg,] is a canonical parameterization of system (3).
From the eigenvaluggthe natural frequenciédsand damping ratiod with

f = Im(u)/(2m), d = —Ref)/|. (6)

are retrieved.

2.2 Single-Setup Stochastic Subspace Identification

To obtain the modal parameters (frequencies, dagnitios and mode shapes) from measure-
ments Y)k=1..n, the covariance-driven output-only subspace ifieation algorithm (Ben-
veniste and Fuchs 1985, Peeters and De Roeck 488%he data-driven Unweighted Principal
Component algorithm (Van Overschee and De Moor 18%ters and De Roeck 1999) are
used. They only differ in the computation the sthechsubspace matrid.

In the covariance-driven S$Sla block Hankel matriH is filled with the correlation lags
R = E(Y\Y.i') of the output data

R, R - %—1
H=Hanka%)=Ff1 RZ 5 Fﬁ B EDINE 4 (7)
Ro R Rug

In thedata-driven SSifirst some data matric& andY™ are built containg the data samples
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and the matriH is obtained from the LQ decomposition of

MR ®

by H= R21.
For both algorithmd possesses the factorization property
H=0X (20)
into observability matrix
H
HF
O= . (11)
HFP

and some other matriX, whereO is obtained fronH by an SVD and truncation at the desired
model order:

H=(U, UO)(Al

From the observability matri® the matricesH in the first block row and= from a least
squares solution of

jvT,o:uAP. (12)
A0

H HF
_ _ _ | HF HF?
OF=0 with O= : ,O=] . (13)
HF P HFP

are obtained. The eigenstructufgp() of the system (3) is then obtained in (4) anddbees-
ponding frequencies and damping ratios in (5)-(6).

2.3 Multi-Setup Stochastic Subspace Identification
Instead of a single record for the outpyy (©f the system (3)\s records

Yk(l,ref) Yk(2,ref) Yk(Ns,ref)
Yk(l,mov) Yk(z,mov) e Yk(Ns,mov) (14)

%/_/
Record 1  Record 2 RecordN,

are now available collected successively. Eachrdejcoontains datx, 0" from a fixed refer-
ence sensor pool containin§” sensors, and dat? ™" from a moving sensor pool containing
r; sensors. As described in (Mevel et al. 2002atdogach recorgl = 1, ...,Ns corresponds a
state-space realization in the form
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Xihh = X + vl

i ref) _ ] :
Yk(J ref) — Hre )xk(l) (15)
Yk(i,mOV) = H{ ,mOV)XéJ')

with a single state transition matfix Note that the unmeasured excitatidt can be different
for each measuremepas the environmental conditions can slightly cleabgtween the mea-
surements. Note also that the observation matffX is independent of the specific measure-
ment setup if the reference sensors are the samegtiout all setups=1, ...,N..

In (Mevel et al. 2002a, b) a method was describatbtmalize and merge data from multiple
setups to obtain global modal parameters (natuegjuencies, damping ratios, mode shapes).
The normalization is important because the backgtaexcitation may differ between setups.
As the normalization and merging step is done,fosty one system identification of the global
system is necessary, instead of having to do systentification of each setup separately and
then merging the results. In (Dohler and Mevel 2@ 1b) this global merging approach,
which is valid for the covariance-driven SSI, wasneralized to a large range of subspace algo-
rithms and consists of the following steps: _ _

a) For each setup, build the matrixH? from the datay, ™" and Y™ (for covariance-

driven SSl as in (5)) _

b) SVD of HY as in (12) to get observability mati®d

c) Separated? into 04" and 0™, where the former contains the information wihe

reference sensorsi{*) and the latter w.r.t. moving sensoks ("),

d) Compute the “normalized” observability matrix p&? = 0¢™ Q" 0@ where*

denotes the pseudoinverse _

e) Interleave the matrice®™"" andOY, j = 1,...N,, to a global observability matri®®",

where H = {0 q@mov p@movr = (NsmovilTin Definition (11)

f) Do global system identification of system (15) w8BI from Section 2.2 starting at Equa-

tion (13) usingd®@”

SVD + re-scaling .
,H(l) > O“”ef),O“)
, SVD + re-scaling .
H2) > o® interleaving identification
> ol > f.d, ol
SVD + re-scaling R
H(N2) > OWN)

Figure 1: Multi-setup system identification with rging schme from (Déhler and Mevel 2010, 2011b).

3 CONFIDENCE INTERVALS ON MODAL PARAMETERS

3.1 Confidence Intervals on Modal Parameters in Sirfsggup SSI

The statistical uncertainty of the obtained modalameters at a chosen system order can be
computed from the uncertainty of the system madrigehich depends on the covariance of the
corresponding subspace matkix The latter can be evaluated by cutting the sedata into
blocks on which instances of the subspace mataxcamputed, so this offers a possibility to
compute the confidence intervals of the modal patars at a certain system order without re-
peating the system identification on each datalblot (Reynders et al. 2008) this algorithm
was described in detail for the covariance-drivéh S



The uncertaintyAF andAH of the system matricds andH are connected to the uncertainty
of the subspace matrix through a Jacobian matgixReynders et al. 2008):

[vecAF

VecAH} = Jp , VedAH (16)

Then, the uncertainty of the modal parameters (abftequencyf, damping ratial and mode
shapep) is propagated

3 vecAF 3 vecAF 3 vecAF
A =30l veaan | A% = 0| vecan | A% =% | veean | an

with the Jacobiang;, Ji, andJy, for each model. Finally, the covariances of the modal para-
meters are obtained from (16) and (17) by

cov(f,)=J¢, Je nZy N ‘]fTA , cov(d,)=Jy, e 2y N ‘]; ,
cov(@, )=Jy, Ie w2y N ‘];L , (18)

whereZ = cov(vecH) is the covariance of the vectorized subspaceixidtwhich can be eas-
ily obtained from the output-only data. The compiota of Z; was described for the covari-
ance-driven SSl in (Reynders et al. 2008) andHerdata-driven UPC algorithm in (Déhler and
Mevel 2011a).

3.2 Confidence Intervals on Modal Parameters in Mukit SSI

In the computation of the confidence intervals led thodal parameters on a single measure-
ment setup in the previous section, matrieeendH only depend on one observability matrix
O that is obtained from the subspace mdttiXNow, doing system identification using multiple
setups as in Section 2.3, the matrifeandH depend on several observability matri€¥5™"
andOY, j = 1,...Ns, which are obtained from the subspace matrit®s j = 1,...N,, of each
setup.

In (Lam et al. 2011) the computation of the confick intervals for multi-setup SSI is ex-
plained in detail. It is based on the fact that sneaments that are taken at different times are
statistically independant from each other and heheematriceH? |, j = 1,...N,, are statisti-
cally independent. Then, the covariance of theesgshatrices can be formulated as

vecF Ny ; |
= = ()

with sensitivitiesJ;, of the system matrices with respect to the dateasch setup (Lam et al.
2011). Then, the covariances of the modal parametee computed as in (18), where
JF,HZHJF,HT is replaced by the sum in (19).

4 NUMERICAL RESULTS

We present the results on the multi-setup systemtifiication and confidence interval compua-
tion on a multilayer E-glass reinforced compos#eql that is similar to the load carrying lami-
nate in a wind turbine blade (Luczak et al. 2010he nominal dimensions are
20x320x320 mm. Vibration measurements were takémgusccelerometers in 3 measurement
setups containing 14 moving sensors each and dop sentaining 7 moving sensors, while
one reference sensor stayed fixed during all thesomements.

In this section, we only present results obtairredhfthe covariance-driven SSI. Results for
data-driven SSI are very similar to obtain.

For system identification, the parameters p + 1 =40 were chosen, when computing the
subspace matricad? ,j = 1,...,4, in (7). When computing the correlatiddsthe reference-
based SSI variant (Peeters and De Roeck 1999) e, where thB, are the correlations
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between the output of all the sensors on the ié& and only the reference sensor on the right
side. From the merged observability matBi®” obtained from the merging algorithm described
in Section 2.3, system identification was perforraédhodel ordera = 1,...,40 by choosing the
appropriate columns @®©".

The resulting stabilization diagram of the natdratjuencies with their standard deviations
is presented in Figure 2. In the stabilization diag a threshold on the relative standard devia-
tion (standard deviation of the value divided big thalue) was put to delete frequencies with a
high uncertainty, as they indicate spurious modlas. obtained modal parameters together with
their relative standard deviations at model ordérafle presented in Table 1. The respective
mode shape estimates are presented in Figure 3.

Table 1: Identified frequencie§ @nd damping ratiosl) together with their relative standard deviations.

f o 11110C d 04 1d120C

Hz % % %
Mode 1 35¢€.1 0.40 21 9.C
Mode 2 551.¢ 0.15 26 6.8
Mode 3 787. 0.36 36 16
Mode 4 92:.4 021 24 85
Mode 5 109¢ 0.09 22 46
Mode 6 1262 0.86 3.E 20
Mode 7 150¢ 0.11 25 3.€
Mode 8 185¢ 043 27 27
Mode 9 192¢ 045 2.7 31
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Figure 2: Stabilization diagram with standardid&ons of frequencies and zoom on mode 3.

5 CONCLUSIONS

In this paper, we presented the uncertainty guaatibn of estimated modal parameters from
multi-setup measurments, where the modal paramatersstimated in a global system identifi-
cation step after normalizing and merging the dieden the different setups, and not on each
setup separately. System identification resulta ebmposite panel were shown and their un-
certainties computed.



Figure 3: Mode shapes obtained from multi-setggiem identification (Luczak et al. 2010).
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