
 
 

1 INTRODUCTION 

Subspace-based system identification methods have been proven efficient for the identification 
of the eigenstructure of linear multivariable systems. An important application of these methods 
is Operational Modal Analysis, where the modal parameters (frequencies, damping ratios and 
mode shapes) are identified of mechanical, civil or aeronautical structures subject to uncon-
trolled, unmeasured and nonstationary excitation. 

To obtain vibration measurements at many coordinates of a structure with only few sensors, 
it is common practice to use multiple sensor setups for the measurements. For these multi-setup 
measurements, some of the sensors, the so-called reference sensors, stay fixed throughout all 
the setups, while the other sensors are moved from setup to setup. By merging in some way the 
corresponding data while taking into account possible different ambient excitations between the 
measurements, this allows to perform modal identification as if there was a large number of 
sensors. A global merging approach was proposed in (Mevel et al. 2002a, b), where the data 
from the different setups is normalized and merged first, followed by a global system identifica-
tion step. Recently, this approach was generalized to a large range of stochastic subspace algo-
rithms in (Döhler and Mevel 2010, 2011b), including covariance-driven and data-driven algo-
rithms such as the Unweighted Principal Component algorithm (UPC, Van Overschee and De 
Moor 1996). 

The obtained modal parameters are afflicted with statistical uncertainty due to measurement 
noise, nonstationary and colored excitation noise, model order truncation and many other 
sources. To evaluate the quality of the estimated modal parameters, it is thus essential to quan-
tify this uncertainty. In (Reynders et al. 2008), this was done for the modal parameter estima-
tion with covariance-driven SSI. In (Döhler et al. 2011), the uncertainty of modal parameters 
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estimated with the data-driven UPC algorithm was computed. In this paper, the uncertainty 
quantification is generalized to stochastic subspace identification using multi-setup measure-
ments. 

2 MULTI-SETUP STOCHASTIC SUBSPACE IDENTIFICATION 

2.1 Models and Parameters 

The behaviour of a mechanical system is assumed to be described by a stationary linear dy-
namical system 

( ) ( ) ( ) ( ), ( ) ( )MZ t CZ t KZ t v t Y t LZ t+ + = =ɺɺ , (1) 

where t denotes continous time, M, C and K are the mass, damping and stiffness matrices, high-
dimensional vector Z collects the displacements of the degrees of freedom of the structure, the 
non-measured external force v modelled as non-stationary Gaussian white noise, the measur-
ments are collected in the vector Y and matrix L indicates the sensor locations. 

The eigenstructure of (1) with the modes µ and mode shapes ϕµ is a solution of 

2 2det( ) 0, ( ) 0,M C K M C K Lµ µ µµ µ µ µ φ ϕ φ+ + = + + = = . (2) 

Sampling model (1) at some rate 1/τ yields the discrete model in state-space form 

1 1,k k k k kX FX V Y HX+ += + = , (3) 

whose eigenstructure is given by 

det( ) 0, ( ) 0,F I F I Hλ λ λλ λ φ ϕ φ− = − = = . (4) 

Then, the eigenstructure of the continous system (1) is related to the eigenstructure of the dis-
crete system (3) by 

e ,τµ
µ λλ ϕ ϕ= = . (5) 

The collection of modes and mode shapes (λ,ϕλ) is a canonical parameterization of system (3). 
From the eigenvalues µ the natural frequencies f and damping ratios d with 

f = Im(µ)/(2π), d = –Re(µ)/|µ|. (6) 

are retrieved. 

2.2 Single-Setup Stochastic Subspace Identification 

To obtain the modal parameters (frequencies, damping ratios and mode shapes) from measure-
ments (Yk)k = 1,…,N, the covariance-driven output-only subspace identification algorithm (Ben-
veniste and Fuchs 1985, Peeters and De Roeck 1999) and the data-driven Unweighted Principal 
Component algorithm (Van Overschee and De Moor 1996, Peeters and De Roeck 1999) are 
used. They only differ in the computation the so-called subspace matrix H.  

In the covariance-driven SSI, a block Hankel matrix H is filled with the correlation lags 
Ri = E(YkYk-i

T) of the output data  
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In the data-driven SSI, first some data matrices Y– and Y+ are built containg the data samples 
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and the matrix H is obtained from the LQ decomposition of 
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by H = R21. 
For both algorithms, H possesses the factorization property 

=H O X  (10) 

into observability matrix 
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and some other matrix X, where O is obtained from H by an SVD and truncation at the desired 
model order: 
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1 1U= ∆O . (12) 

From the observability matrix O the matrices H in the first block row and F from a least 
squares solution of 

F =O O   with  
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are obtained. The eigenstructure (λ,φλ) of the system (3) is then obtained in (4) and the corres-
ponding frequencies and damping ratios in (5)-(6). 

2.3 Multi-Setup Stochastic Subspace Identification 

Instead of a single record for the output (Yk) of the system (3), Ns records 
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are now available collected successively. Each record j contains data Yk
(j,ref) from a fixed refer-

ence sensor pool containing r(ref) sensors, and data Yk
(j,mov) from a moving sensor pool containing 

r j sensors. As described in (Mevel et al. 2002a, b), to each record j = 1, …, Ns corresponds a 
state-space realization in the form 
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with a single state transition matrix F. Note that the unmeasured excitation V(j) can be different 
for each measurement j as the environmental conditions can slightly change between the mea-
surements. Note also that the observation matrix H(ref) is independent of the specific measure-
ment setup if the reference sensors are the same throughout all setups j = 1, …, Ns. 

In (Mevel et al. 2002a, b) a method was described to normalize and merge data from multiple 
setups to obtain global modal parameters (natural frequencies, damping ratios, mode shapes). 
The normalization is important because the background excitation may differ between setups. 
As the normalization and merging step is done first, only one system identification of the global 
system is necessary, instead of having to do system identification of each setup separately and 
then merging the results. In (Döhler and Mevel 2010, 2011b) this global merging approach, 
which is valid for the covariance-driven SSI, was generalized to a large range of subspace algo-
rithms and consists of the following steps: 

a) For each setup j, build the matrix H(j) from the data Yk
(j,ref) and Yk

(j,mov) (for covariance-
driven SSI as in (5)) 

b) SVD of H(j) as in (12) to get observability matrix O(j) 
c) Separate O(j) into O(j,ref) and O(j,mov), where the former contains the information w.r.t. the 

reference sensors (H(ref)) and the latter w.r.t. moving sensors (H(j,mov)). 
d) Compute the “normalized” observability matrix part Ô(j) = O(j,mov) (O(j,ref))+ O(1,ref), where + 

denotes the pseudoinverse 
e) Interleave the matrices O(1,ref) and Ô(j), j = 1,…,Ns, to a global observability matrix O(all), 

where H = (H(ref)T  H(1,mov)T  H(2,mov)T  …  H(Ns,mov)T)T in Definition (11) 
f) Do global system identification of system (15) with SSI from Section 2.2 starting at Equa-

tion (13) using O(all) 
 
 

 
 

Figure 1: Multi-setup system identification with merging schme from (Döhler and Mevel 2010, 2011b). 

3 CONFIDENCE INTERVALS ON MODAL PARAMETERS 

3.1 Confidence Intervals on Modal Parameters in Single-Setup SSI 

The statistical uncertainty of the obtained modal parameters at a chosen system order can be 
computed from the uncertainty of the system matrices, which depends on the covariance of the 
corresponding subspace matrix H. The latter can be evaluated by cutting the sensor data into 
blocks on which instances of the subspace matrix are computed, so this offers a possibility to 
compute the confidence intervals of the modal parameters at a certain system order without re-
peating the system identification on each data block. In (Reynders et al. 2008) this algorithm 
was described in detail for the covariance-driven SSI. 
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The uncertainty ∆F and ∆H of the system matrices F and H are connected to the uncertainty 
of the subspace matrix through a Jacobian matrix JF,H (Reynders et al. 2008): 
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Then, the uncertainty of the modal parameters (natural frequency f, damping ratio d and mode 
shape φ) is propagated 
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with the Jacobians Jfλ, Jdλ and Jϕλ for each mode λ. Finally, the covariances of the modal para-
meters are obtained from (16) and (17) by 

, ,cov( ) T T
f F H F H ff J J J J
λ λλ = ΣH ,  , ,cov( ) T T

d F H F H dd J J J J
λ λλ = ΣH ,  

, ,cov( ) T T
F H F HJ J J J

λ λλ ϕ ϕϕ = ΣH , (18) 

where ΣH = cov(vec H) is the covariance of the vectorized subspace matrix H which can be eas-
ily obtained from the output-only data. The computation of ΣH was described for the covari-
ance-driven SSI in (Reynders et al. 2008) and for the data-driven UPC algorithm in (Döhler and 
Mevel 2011a).  

3.2 Confidence Intervals on Modal Parameters in Multi-Setup SSI 

In the computation of the confidence intervals of the modal parameters on a single measure-
ment setup in the previous section, matrices F and H only depend on one observability matrix 
O that is obtained from the subspace matrix H. Now, doing system identification using multiple 
setups as in Section 2.3, the matrices F and H depend on several observability matrices O(1,ref) 
and Ô(j), j = 1,…,Ns, which are obtained from the subspace matrices H(j) , j = 1,…,Ns, of each 
setup.  

In (Lam et al. 2011) the computation of the confidence intervals for multi-setup SSI is ex-
plained in detail. It is based on the fact that measurements that are taken at different times are 
statistically independant from each other and hence the matrices H(j) , j = 1,…,Ns, are statisti-
cally independent. Then, the covariance of the system matrices can be formulated as 

( ) ( )
( )

1

vec
cov , where cov(vec ),

vec

s

j j

N
T j

j j
j

F
J J

H =

  
= Σ Σ =   

  
∑ H H

H  (19) 

with sensitivities Jj of the system matrices with respect to the data of each setup j (Lam et al. 
2011). Then, the covariances of the modal parameters are computed as in (18), where 
JF,HΣHJF,H

T is replaced by the sum in (19). 

4 NUMERICAL RESULTS 

We present the results on the multi-setup system identification and confidence interval compua-
tion on a multilayer E-glass reinforced composite panel that is similar to the load carrying lami-
nate in a wind turbine blade (Luczak et al. 2010). The nominal dimensions are 
20x320x320 mm. Vibration measurements were taken using accelerometers in 3 measurement 
setups containing 14 moving sensors each and one setup containing 7 moving sensors, while 
one reference sensor stayed fixed during all the measurements. 

In this section, we only present results obtained from the covariance-driven SSI. Results for 
data-driven SSI are very similar to obtain. 

For system identification, the parameters p + 1 = q = 40 were chosen, when computing the 
subspace matrices H(j) , j = 1,…,4, in (7). When computing the correlations Ri, the reference-
based SSI variant (Peeters and De Roeck 1999) was chosen, where the Ri are the correlations 
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between the output of all the sensors on the left side and only the reference sensor on the right 
side. From the merged observability matrix O(all) obtained from the merging algorithm described 
in Section 2.3, system identification was performed at model orders n = 1,…,40 by choosing the 
appropriate columns of O(all).  

The resulting stabilization diagram of the natural frequencies with their standard deviations 
is presented in Figure 2. In the stabilization diagram a threshold on the relative standard devia-
tion (standard deviation of the value divided by this value) was put to delete frequencies with a 
high uncertainty, as they indicate spurious modes. The obtained modal parameters together with 
their relative standard deviations at model order 40 are presented in Table 1. The respective 
mode shape estimates are presented in Figure 3. 

 
 

Table 1: Identified frequencies (f) and damping ratios (d) together with their relative standard deviations. 
 

 f σf  / f ⋅100 d σd  / d ⋅100 
 Hz % % % 
Mode 1 358.1 0.40 2.1 9.0 
Mode 2 551.9 0.15 2.6 6.8 
Mode 3 787.5 0.36 3.6 16 
Mode 4 923.4 0.21 2.4 8.5 
Mode 5 1096 0.09 2.2 4.6 
Mode 6 1262 0.86 3.5 20 
Mode 7 1508 0.11 2.5 3.6 
Mode 8 1855 0.43 2.7 27 
Mode 9 1928 0.45 2.7 31 

 

 
   Figure 2: Stabilization diagram with standard deviations of frequencies and zoom on mode 3. 

 

5 CONCLUSIONS 

In this paper, we presented the uncertainty quantification of estimated modal parameters from 
multi-setup measurments, where the modal parameters are estimated in a global system identifi-
cation step after normalizing and merging the data from the different setups, and not on each 
setup separately. System identification results of a composite panel were shown and their un-
certainties computed. 
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   Figure 3: Mode shapes obtained from multi-setup system identification (Luczak et al. 2010). 
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