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Abstract

In Operational Modal Analysis (OMA) of large structures we often need to process sensor data from multiple
non-simultaneously recorded measurement setups. These setups share some sensors in common, the so-called
reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to
the next. To obtain the modal parameters of the investigated structure it is necessary to process the data of all the
measurement setups and normalize it as the unmeasured background excitation of each setup might be different. In
this paper we present system identification results using a merging technique for data-driven Stochastic Subspace
Identification (SSI), where the data is merged and normalized prior to the identification step. Like this, the different
measurement setups can be processed in one step and do not have to be analyzed separately. We apply this new
merging technique to measurement data of the Heritage Court Tower in Vancouver, Canada.

1 Introduction

Subspace-based linear system identification methods have been proven efficient for the identification of the eigen-
structure of a linear multivariable system in many applications. Our main motivation in this paper is output-only
structural identification in vibration mechanics. This problem consists in identifying the modal parameters (natural
frequencies, damping ratios and mode shapes) of a structure subject to ambient unmeasured vibrations, by using
accelerometer measurements or strain gauges. This is output-only system identification, as the excitation input is
unknown and not measured. Examples are, amongst others, offshore structures subject to swell, bridges subject to
wind and traffic, etc.

We wish to analyze how the data-driven Stochastic Subspace Identification (SSI) with the Unweighted Principal
Component algorithm [7] can be adapted when several successive data sets are recorded, with sensors at different
locations in the structure. For doing this, some of the sensors, called the reference sensors, are kept fixed, while the
others are moved. Like this, we mimic a situation in which lots of sensors are available, while in fact only a few are at
hand. However, there is one unpleasant feature of structural identification of structures subject to ambient excitation,
namely that excitation is typically turbulent in nature and nonstationary. For example, fluid/structure interaction in
offshore structures results in shock effects causing nonstationary excitation, and the same holds for wind and traffic
on bridges. Like this, the excitation factor can change from setup to setup.

The relevance of merging successive records, and its implementation in the case of nonstationary excitation,
are the subject of this paper. We describe a new merging algorithm for data-driven SSI and test it on vibration data
of the Heritage Court Tower in Vancouver, Canada.

2 Reference-based Data-driven Stochastic Subspace Identification (SSI)

2.1 Single setup

We consider a linear multi-variable output-only system described by a discrete-time state space model
Xk+1 = F Xk + Vk+1

Y
(ref)
k = H(ref) Xk

Y
(mov)
k = H(mov) Xk

(1)



with

• Xk the state vector at time instant k,

• Y (ref)
k the observed output vector of the reference sensors,

• Y (mov)
k the observed output vector of all the sensors minus the reference sensors (the remaining sensors),

• H(ref) the observation matrix with respect to the reference sensors,

• H(mov) the observation matrix with respect to the remaining sensors,

• F the state transition matrix,

• Vk the unmeasured stationary Gaussian white noise.

Let furthermore

• Yk =

(
Y

(ref)
k

Y
(mov)
k

)
all the observed output at time instant k,

• H =
(
H(ref)

H(mov)

)
the full observation matrix,

• N the number of measurements (k = 1, . . . , N ),

• r the total number of sensors and r(ref) the number of reference sensors.

The classical reference-based data-driven subspace identification of the eigenstructure (λ, φλ) of the system (1)
consists of the following steps for the Unweighted Principal Component algorithm [7]: We choose p and q as
variables with p + 1 ≥ q that indicate the quality of the estimations (a bigger p leads to better estimates) and the
maximal system order (≤ qr(ref)). Normally, we choose p = q−1, but in the case of measurement noise p = q−1 + l
should be chosen, where l is the order of the noise.

We build the data matrices
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and the weighted Hankel matrix1

Hp+1,q = Y+
p+1Y−q

T
(
Y−q Y−q

T
)−1

Y−q . (3)

With the factorization Hp+1,q = Op+1Xq into matrix of observability and Kalman filter state sequence with

Op+1
def=


H
HF
HF 2

...
HF p

 (4)

we can retrieve the matrices H as the first block row of Op+1 and F from the least squares solution of
H
HF

...
HF p−1

F =


HF
HF 2

...
HF p

 .

1AsHp+1,q is usually a very big matrix and difficult to handle, we continue the calculation in practice with the R part from an RQ-decomposition
of the data matrices, see [7] for details. This will lead to the same results as only the left part of the decomposition of Hp+1,q is needed.



Finally we obtain the eigenstructure (λ, φλ) of the system (1) from

det(F − λ I) = 0, F ϕλ = λ ϕλ, φλ = Hϕλ.

In the following we will skip the subscripts of the matrices Hp+1,q, Y+
p+1, Y−q and Op+1.

2.2 Multiple setups

Instead of a single record for the output (Yk) of the system (1), Ns records(
Y
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are now available collected successively. Each record j contains data Y
(j,ref)
k from a fixed reference sensor pool,

and data Y (j,mov)
k from a moving sensor pool. To each record j = 1, . . . , Ns corresponds a state-space realization in

the form 
X
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(j)
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(j)
k+1

Y
(j,ref)
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Y
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(j)
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(6)

with a single state transition matrix F . Note that the unmeasured excitation V (j) can be different for each setup j
as the environmental conditions can slightly change between the measurements. However, during each setup j the
noise V (j) is assumed to be stationary. Note also that the observation matrix H(ref) is independent of the specific
measurement setup if the reference sensors are the same throughout all measurements j = 1, . . . , Ns.

For each setup j we obtain a “local” weighted Hankel matrix

H(j) = Y+
(j)Y−(j)

T
(
Y−(j)Y−(j)

T
)−1

Y−(j) (7)

according to equations (2)-(3), where Y+
(j) is filled with data from all the sensors and Y−(j) with data from the refer-

ence sensors of this setup (see Equation (2)). The question is now how to adapt the subspace identification from
Section 2.1 to

• merge the data from the multiple setups j = 1, . . . , Ns to obtain global modal parameters (natural frequencies,
damping ratios, mode shapes), and to

• normalize or re-scale the data from the multiple setups as the background excitation may differ from setup to
setup.

In the following section we present two approaches for this problem: the common practice approach PoSER that
processes all the setups separately and merges them at the end, and the new approach PreGER, that processes
all the setups together.

3 Merging strategies

3.1 PoSER approach with UPC

When having multiple measurement setups that share some reference sensors, it is common practice to perform
the subspace identification algorithm of Section 2.1 on each setup separately in order to obtain the (local) modal
parameters. To obtain the natural frequencies and damping ratios of the whole structure, the appropriate values of
all setups are averaged. In order to merge the obtained (partial) mode shapes, we have to re-scale them as they
were calculated on excitation factors that were possibly different from setup to setup. This is done in a least-square
sense on the reference sensor part of each partial mode shape. This approach is also called PoSER (Post Separate
Estimation Re-scaling), see also e.g. [6].

Especially when the number of setups is large, this approach can be tiresome as many stabilization diagrams
have to be analyzed. Some modes may be less excited in some of the setups, and it might be difficult to distinguish
closely spaced modes in the diagrams.
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Figure 1: Merging partial mode shape estimates φ(j), j = 1, ..., Ns into a global mode shape estimate φ(all) in
the PoSER approach.

3.2 PreGER approach with UPC

Another merging approach that was described for covariance-driven SSI in [2, 3, 1] makes use of a factorization of
the Hankel matrix of each patch and normalizes them with a common right factor to introduce the same excitation
level to all the setups. We adapt this idea to the data-driven SSI with the UPC algorithm. We also call this method
PreGER (Pre Global Estimation Re-scaling).

For each setup j = 1, . . . , Ns we build the weighted Hankel matrix (7) that has the factorization property H(j) =
O(j)X (j). In order to merge the data we first take the different excitation levels of each setup into account, which
are present in the Kalman filter state sequence X (j) since the matrix of observability is only dependent of the
observation matrix H(j) and state matrix F that are not affected. In the first step, all the Hankel matrices H(j) are
re-scaled with a common Kalman filter state sequence X (j∗) of one fixed setup j∗, then the resulting matrices are
merged and a global modal parameter estimation is finally done on the merged matrix.
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Figure 2: Merging Hankel matrices of each setup to obtain a global Hankel matrix and global mode shape
estimate φ(all) in the PreGER approach.

In detail, we separate the weighted Hankel matrices H(j) into matrices H(j,ref) and H(j,mov) by taking the appro-
priate rows of H(j) that correspond to the reference resp. moving sensor data from Y+

(j,ref) resp. Y+
(j,mov), see also

Equation (7). As the weighted Hankel matrices fulfill the factorization property H(j) = O(j)X (j) we now have

H(j,ref) = O(ref)X (j), H(j,mov) = O(j,mov)X (j),

Figure 1: Merging partial mode shape estimates φ(j), j = 1, ..., Ns into a global mode shape estimate φ(all) in
the PoSER approach.

3.2 PreGER approach with UPC

Another merging approach that was described for covariance-driven SSI in [4, 5, 2] makes use of a factorization of
the Hankel matrix of each setup and normalizes them with a common right factor to introduce the same excitation
factor to all the setups. We adapt this idea to the data-driven SSI with the UPC algorithm. We also call this method
PreGER (Pre Global Estimation Re-scaling).

For each setup j = 1, . . . , Ns we build the weighted Hankel matrix (7) that has the factorization property H(j) =
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re-scaled with a common Kalman filter state sequence X (j∗) of one fixed setup j∗, then the resulting matrices are
merged and a global modal parameter estimation is finally done on the merged matrix.
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with the matrices of observability

O(j) =


H(j)

H(j)F
H(j)F 2

...
H(j)F p
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
H(ref)

H(ref)F
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H(j,mov)

H(j,mov)F
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...
H(j,mov)F p

 .

Note also, that O(j) consists of the rows of O(j,ref) and O(j,mov). For the normalization we need the matrices X (j) in
the same state basis. We juxtapose the matrices H(j,ref), j = 1, . . . , Ns to

H(all,ref) =
(
H(1,ref) H(2,ref) . . . H(Ns,ref)

)
and decompose this matrix to

H(all,ref) = O(ref) (X (1) X (2) . . . X (Ns)
)
,

from where we obtain the matrices X (j). We choose one setup j∗ ∈ {1, . . . , Ns} and re-scale the matrices H(j,mov)

to
H̄(j,mov) = H(j,mov) X (j)T (X (j) X (j)T )−1 X (j∗),

so that H̄(j,mov) = O(j,mov)X (j∗) holds. In the last step we interleave the block rows of the matrices H̄(j,mov),
j = 1, . . . , Ns, and the matrix H(j∗,ref), to obtain the merged matrix H̄(all) with the factorization property

H̄(all) = O(all) X (j∗) with O(all) =


H(all)

H(all)F
H(all)F 2

...
H(all)F p

 and H(all) =


H(ref)

H(1,mov)

H(2,mov)

...
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
and perform the subspace system identification on it to obtain the global modal parameters.

4 Modal analysis of the Heritage Court Tower

4.1 Description of the Heritage Court Tower and vibration measurements

The building considered in this study is the Heritage Court Tower (HCT) in downtown Vancouver, British Columbia in
Canada. It is a relatively regular 15-story reinforced concrete shear core building. In plan, the building is essentially
rectangular in shape with only small projections and setbacks. Typical floor dimensions of the upper floors are about
25 m by 31 m, while the dimensions of the lower three levels are about 36 m by 30 m. The footprint of the building
below ground level is about 42 m by 36 m. Typical story heights are 2.70 m, while the first story height is 4.70
m. The elevator and stairs are concentrated at the center core of the building and form the main lateral resisting
elements against potential wind and seismic lateral and torsional forces. The tower structure sits on top of four
levels of reinforced concrete underground parking. The parking structure extends approximately 14 meters beyond
the tower in the south direction forming an L-shaped podium. The parking structure and first floors of the tower are
basically flush on the remaining three sides. The building tower is stocky in elevation having a height to width aspect
ratio of approximately 1.7 in the east-west direction and 1.3 in the north-south direction. Because the building sits
to the north side of the underground parking structure, coupling of the torsional and lateral modes of vibration was
expected primarily in the EW direction.

As reported in [8], a series of ambient vibration tests was conducted on April 28, 1998 by researchers from
the University of British Columbia [3]. It was of practical interest to test this building because of its shear core,
which concentrates most of lateral and torsional resisting elements at the center core of the building. Additional
structural walls are located close to the perimeter of the building but are arranged in such a way that they offer
no additional torsional restraint. Shear core buildings may exhibit increased torsional response when subjected to
strong earthquake motion depending on the uncoupled lateral to torsional frequency ratio and of the amount of static
eccentricity in the building plan [1]. The dynamic characteristics of interest for this study were the first few lateral
and torsional natural frequencies and the corresponding mode shapes. The degree of torsional coupling between
the modes was also investigated.



The vibration measurements were conducted using an eight-channel system (with force-balanced accelerom-
eters) and were recorded in four different measurement setups. The accelerometers were typically located in the
northwest and northeast corners of the building on every other floor starting from the roof down to the ground floor.
Details of the field testing of this structure are given in [3].

Figure 3: HCT Building and setup close up

4.2 Modal analysis with the PoSER and PreGER approaches

The modal analysis for both the PoSER and PreGER approach was tuned with the same parameters. The maximal
considered model order was 80 and the number of samples was 6560 and hence relatively low, amounting to 328s
at a sampling rate of 20Hz. The parameters for the modal extraction from the stabilization diagrams are shown in
Figure 4.

Figure 4: Tuning of the SSI approach

In the PoSER approach all the four setups are processed separately, as described in Section 3.1. In the PreGER
approach all the four setups are processed at once, as described in Section 3.2. The resulting stabilization diagrams
are shown in Figures 5 and 6.



Figure 5: PoSER stabilization diagram.

Figure 6: PreGER stabilization diagram.

In the frequency range of interest [0 – 6 Hz], 6 modes could be identified. Their natural frequencies and damping
ratios are displayed in Tables 1 and 2. A comparison to the natural frequencies obtained by [8] together with the
characteristics of the corresponding mode shapes is given in Table 3.

Mode Frequency [Hz] Damping Ratio
1 1.228 2.035
2 1.286 1.898
3 1.453 1.348
4 3.859 1.260
5 4.260 1.497
6 5.350 1.840

Table 1: Identified modes with the PoSER
approach.

Mode Frequency [Hz] Damping Ratio
1 1.229 2.914
2 1.295 2.466
3 1.449 1.516
4 3.855 1.491
5 4.258 2.242
6 5.369 2.928

Table 2: Identified modes with the PreGER
approach.



The dynamic characteristics of interest for this study were the 
first few lateral and torsional natural frequencies and the 
corresponding mode shapes.  The degree of torsional 
coupling between the modes was also investigated. 

 
2. DESCRIPTION OF THE BUILDING 
 
The building considered in this study is called Heritage Court 
Tower (HCT) and it is located in downtown Vancouver, 
British Columbia in Canada. It is a relatively regular 15-story 
reinforced concrete shear core building. In plan, the building 
is essentially rectangular in shape with only small projections 
and setbacks.  Typical floor dimensions of the upper floors 
are about 25 m by 31 m, while the dimensions of the lower 
three levels are about 36 m by 30 m.  The footprint of the 
building below ground level is about 42 m by 36 m.  Typical 
story heights are 2.70 m, while the first story height is 4.70 m.  
The elevator and stairs are concentrated at the center core of 
the building and form the main lateral resisting elements 
against potential wind and seismic lateral and torsional 
forces. The tower structure sits on top of four levels of 
reinforced concrete underground parking. The parking 
structure extends approximately 14 meters beyond the tower 
in the south direction forming an L-shaped podium. The 
parking structure and first floors of the tower are basically 
flush on the remaining three sides.  The parking structure 
extends approximately 14 m beyond the tower in the south 
direction but is essentially flush with the first floor walls on the 
remaining three sides.  The building tower is stocky in 
elevation having a height to width aspect ratio of 
approximately 1.7 in the east-west direction and 1.3 in the 
north-south direction.  An overview of the building is 
presented in Figure 1 and a typical floor plan diagram is 
presented in Figure 2.  Because the building sits to the north 
side of the underground parking structure, coupling of the 
torsional and lateral modes of vibration was expected 
primarily in the EW direction.  
 
3. EXPERIMENTAL STUDY 
 
The vibration measurements were conducted using an eight-
channel (with force-balanced accelerometers) system.  The 
accelerometers were typically located in the northwest and 
northeast corners of the building on every other floor starting 
from the roof down to the ground floor.  Details of the field 
testing of this structure are given in reference [1].  The tower 
model was simplified to a rectangle with nodes aligned 
vertically. The motions of the corners of this rectangle were 
computed from the measured motions by assuming rigid 
body motion of the floor slabs.  Program ARTeMIS [3] was 
used to conduct the experimental modal analysis (EMA) and 
determine the modal properties of the building. The first six 
identified natural frequencies of vibration are listed in Table 1 
and the corresponding wire-frame spatial views of the mode 
shapes are shown in Figures 2.  In this figure only the part of 
the building above the ground level is physically represented.  
Additional modal identification studies conducted by other 
researchers and summarized in reference [4] confirm the 
values of the frequencies and mode shapes presented here. 

Mode No. EMA freq. Mode type 
1 1.23 1st NS mode 

2 1.27 1st Torsional 

3 1.44 1st EW mode  

4 3.87 2nd Torsional (coupled) 

5 4.25 2nd NS mode 

6 5.35 2nd EW mode (coupled) 

Table 1.  First six experimentally determined natural 
Frequencies of the HCT Building (Hz). 

 
4. FEM UPDATING STUDY 
 
An attempt to correlate experimental and analytical modal 
properties of the building using a manual updating process 
is described in reference [5].  That study clearly shows the 
limitations and difficulties in trying to obtain a good general 
correlation between experimental and analytical modal 
properties for a large civil engineering structure.  In view of 
this it was decided to use a more efficient platform for 
updating the initial FE model of the structure.  Program 
FEMtools [6] was selected for this work because it is a CAE 
analysis program that includes various tools that permit a 
fast and effective integration of test and FE analysis data.  
The analytical work involved comparing the natural 
frequencies and mode shapes of the EMA and FEM models 
until an acceptable correlation was achieved.  Details of the 
FE model used for this study and of the parameters selected 
for the model updating are given in the following sections. 
 
 
4.1. FE model of the building 
 

The FE modeling analysis capabilities of FEMtools were 
used to create a "starting" model of the structure.  The 
information presented in the design drawings of the building 
was used to formulate the geometry and material properties 
of the model.  Since the experimental results indicated that 
the motions at the ground floor level of the building were 
negligible compared with the motions at the upper floors, it 
was decided to model only the superstructure of the building 
and assume a "fixed base" condition at the ground level.  The 
main structural elements (concrete core shear walls, gravity 
load columns, header beams and load transfer beams at the 
second floor) were all included in the model.  Beams and 
columns were modeled as 3D beam-column elements and 
shear walls were modeled as 4-node plate elements. Flat 
slab floors were modeled mostly as 4-node plate elements.  
The exterior cladding of the building was also modeled as 
simplified 4-node thin plates placed near the perimeter of the 
structure.  All setbacks and structural section changes 
throughout the height of the building were taken into account.  

Table 3: EMA modes and mode shape descriptions [8].

For all modes, the damping ratios of the PreGER estimates are somewhat higher than the PoSER estimates.
This might be due to the fact, that the natural frequencies in each measurement setup are slightly different. Then,
the resulting frequency for each mode obtained by the PreGER approach is associated to a higher damping ratio,
consequence from the merging of overlapping frequencies.

The mode shapes obtained by the PoSER and PreGER approaches are shown in Figure 8 and a MAC com-
parison between them is shown in Figure 7. The MAC values are very close to 1, indicating very similar mode
shapes.

Figure 7: MAC between mode shapes estimated by PoSER and PreGER approaches.

5 Summary of results

This paper focuses on obtaining the full mode shapes from a structure, under the assumption that sensor measure-
ments were collected in different sessions. Two approaches were considered, both based on the data-driven SSI
framework. The first approach, PoSER, merges the mode shapes obtained on the different setups after the SSI
of each setup, while the second approach, PreGER, merges the correlation of the data before performing the SSI
on the full set of data. All modes were recovered, damping estimates were consistent, albeit a bit higher for the
PreGER approach, which is expected. As for the mode shapes, good MAC coherency was obtained between the
two methods. The PreGER approach shows good prospect because it does not need any post processing of the
estimation results in order to get the full mode shapes of the structure and no threshold based matching of modes
between setups is needed.



mode 1 - 1.229 Hz - 2.97 % mode 2 - 1.295 Hz - 2.48 %

mode 3 - 1.448 Hz - 2.57 % mode 4 - 3.855 Hz - 1.50 %

mode 5 - 4.258 Hz - 2.26 % mode 6 - 5.369 Hz - 2.95 %

Figure 8: First 6 mode shapes obtained with the PoSER and the PreGER approach.
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