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Nomenclature 
τ,t   Time  

f   Frequency 
)(ty   System response 

mN   Number of measurement channels 

Φφ,   Mode shape, mode shape matrix 
C   Covariance matrix 
G   Spectral density matrix 

Uu,   Singular vector, Matrix of singular vectors 

[ ]is   Diagonal matrix of singular values 

21, dd   Discriminator functions 

21,ΩΩ  Threshold levels 
γσµ ,,  Mean, standard deviation, kurtosis 

          Correlations fixed sensors of record j and Hankel matrix  
              Correlations of moving sensors of record j and Hankel matrix  
             Merged Hankel matrices (fixed and moving)          

Abstract 
In this paper the problems of doing automatic modal parameter extraction and how to account for 
large number of data to process are considered. Two different approaches for obtaining the modal 
parameters automatically using OMA are presented: The Frequency Domain Decomposition (FDD) 
technique and a correlation-driven Stochastic Subspace Identification (SSI) technique. Special 
attention is given to the problem of data reduction, where many sensors are available. Finally, the 
techniques are demonstrated on real data. 
 



1 Introduction 
 
Structural Health Monitoring (SHM) is the overall name for the framework and modal parameter 
estimation is only one many disciplines required for a successful monitoring project. However, the 
general idea is to establish a baseline, or reference state and then over time compare current states 
with the reference state. The parameters describing the state can be different quantities but there will 
most likely be modal parameters among them. For a system like this to work properly, it is therefore 
necessary to consider how the modal parameter extraction can be made automatically. Another 
problem that needs to be addressed is the amount of data one need to expect. For a complex structure 
it may be necessary to have many measurement locations that either is measured simultaneously or 
bit by bit by use of reference sensors. Besides having to deal with many measurement channels it is 
also necessary to account for the many samples acquired in each channel. The larger the structure 
becomes the larger this problem gets, because the increase of necessary measurement time.  
 
This paper will focus on these two problems; automatic modal parameter extraction and how to 
account for large number of data to process. Two different approaches for obtaining the modal 
parameters automatically using Operational Modal Analysis (OMA) will be presented.  
 
The Frequency Domain Decomposition (FDD) technique is known as one of the most user friendly 
and powerful techniques for operational modal analysis of structures. However, the classical 
implementation of the technique requires some user interaction. In this paper an automatic algorithm 
for FDD is presented. This method can extract modal parameters as well as discriminate between 
peaks of modes and harmonics originating from forced sinusoidal excitation.  
 
The Stochastic Subspace Identification (SSI) is a well known identification procedure well suited to 
handle data with non stationarity. Many variants exist. Here, we will focus on an automated version 
of the multipatch covariance driven subspace. This variant has the advantage over data driven 
versions of using less memory and merges data from different records measured at different periods 
of time. Special attention will be given to the problem of automated extraction of the modes. Finally, 
the techniques will be demonstrated on real data. 
 
2 The Frequency Domain Decomposition Technique 
 
When dealing with large system with many channels and many samples, the frequency domain is a 
desirable domain to work with. The estimation of spectral densities can easily be performed because 
only small segments of data will stay in the computers memory at the same time. Also the estimation 
time becomes an insignificant problem, due to the extremely fast implementations of the Fast Fourier 
Transform (FFT) available for various PC processors. 
 
2.1 The basic algorithm 
 
Though it is still popular to works directly with spectral densities it is cumbersome to deal with all 
the auto- and cross spectral densities, and the accuracy of the modal parameter estimates extracted 
will depend very much on how well-separated the modes are. The Frequency Domain Decomposition 
(FDD) technique is a way to solve these two problems, Brincker et al [1], [2]. The technique 
simplifies the user interaction because the user has only to consider one frequency domain function - 
the singular value diagram of the spectral density matrix. This diagram concentrates information from 
all spectral density functions. Further, if some simple assumptions are fulfilled, the technique directly 
provides a modal decomposition of the vibration information, and the modal information for each 
mode can be extracted easily and accurately. The technique works even in the case of closely spaced 
modes and when a lot of noise is present.   
 



The principle in the FDD technique is easiest illustrated by realizing that any response can by written 
in modal coordinates 
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Now obtaining the covariance matrix of the responses 
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and using equation (1) leads to 
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Expressing that the covariance of the measurements is related to the covariance of the modal 
coordinates through the mode shape matrix. The H is the Hermitian transposed operator. The 
equivalent relation in frequency domain is obtained by taking the Fourier transform 
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Thus if the modal coordinates are uncorrelated, the power spectral density matrix  of the 
modal co-ordinates is diagonal, and thus, if the mode shapes are orthogonal, then equation (4) is a 
singular value decomposition (SVD) of the response spectral matrix.  
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Therefore, FDD is based on taking the SVD of the spectral density matrix 
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The matrix [ ]Λ,, 21 uuU = is a matrix of singular vectors and the matrix [ ]is  is a diagonal matrix 
of singular values. As it appears from this explanation, plotting the singular values of the spectral 
density matrix will provide an overlaid plot of the auto spectral densities of the modal coordinates. 
Note here that the singular matrix [ ]Λ,, 21 uuU =  is a function of frequency because of the sorting 
process that is taking place as a part of the SVD algorithm.  
 
2.4 Data Reduction – Projection Channels 
 
Since the spectral density matrices typically consist of much more columns than there are modes 
participating at the difference frequencies, many of the columns of Gyy(f) are linear dependent upon 
each other. For large channel counts there are no need to process all the columns and the following 
SVD of equation (5). Good and reliable estimates of the modal parameters can be obtained from a 
limited number of columns. The columns we choose will be called the projection channels.  
 
In the example used in this paper five reference channels where used, and these references were place 
carefully in order to ensure that all analyzed modes were present in at least one of them. We choose 
these five reference channels as our projection channels in this case. The quality of the choice of 
projection channels should be verified by looking at the SVD of the spectral densities. If the last 
plotted singular value forms a horizontal line over the frequency band of interest, and if the other 
singular values display a good mode separation, then the choice is fine. If not other and / or more 
projection channels should be included. 



If more projection channels are needed, the channels to look for should contain as much new 
information as possible about the system compared to the channels already selected. This evaluation 
can be performed using a simple analysis of the correlation coefficients between the difference 
measurement channels. 
 
2.3 The Manual Approach 
 
A mode is identified by looking at where the first singular value has a peak, let us say at the 
frequency . This defines in the simplest form of the FDD technique - the peak picking version of 
FDD - the modal frequency. The corresponding mode shape is obtained as the corresponding first 
singular vector  in . 
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2.4 Some Helpful Indicators 
 
The process of findings peaks on a function is easily automated. However, to help distinguish 
between the different physical modes, harmonics and noise we introduce a set of indicators in the 
following. 
 
2.4.1 Modal Coherence Indicator 
 
Suppose a peak has been identified in the first singular value. The question is now if this is a liable 
modal peak or is if it just a noise peak. Calculating the correlation between the first singular vector at 
the peak – the mode shape vector at that point - and the first singular vector at neighboring points 
defines the discriminator function called the modal coherence 
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If the modal coherence is close to unity, then the first singular value at the neighboring point 
correspond to the same modal coordinate, and therefore, the same mode is dominating. This function 
is helpful in discriminating between points dominated by modal information and points dominated by 
noise. If the components of each of the vectors in equation (7) are random, then  
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and since the length is unity 
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where is the number of measurement channels. Thus the more measurement channels we have 
the closer two points with random (non-physical) information will get to zero. A reasonable criterion 
for accepting the neighboring point as a point with similar physical information, and thus accepting 
the presence of physical information at that frequency, could be by introducing a threshold level  
and the requirement 

mN

1Ω

11 Ω≥d                   (10) 
 
setting the limit  equal to a number close to 1, say 0.8. 1Ω



2.4.2 Modal Domain Indicator 
 
Once a peak has been accepted as representing modal information, another discriminator function can 
be helpful in discriminating between different modes. In this case the discriminator function is 
defined as 
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Thus this discriminator function is not a function of the initial point given by the frequency , but is 

a function of the frequency  of the considered neighboring point. If a high correlation is present 
over a certain frequency range around the considered peak it means that over that frequency range 
only that mode is dominating and introducing a similar criterion 
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defines a frequency range [ ]2010 ; ffff ∆−∆−  around each peak of modal dominance called the 

modal domain. The lower the value 2Ω , the larger the size 21 fff ∆+∆=∆  of the corresponding 

modal domain. Again a good initial value of would be 0.8. See Brincker et al. [3] for a more 

comprehensive discussion the choices of and 
2Ω

1Ω 2Ω .  
 
2.4.3 Harmonic Indicator 
 
Unfortunately, it is not always only physical modes and broad banded noise that has to be dealt with 
when extracting modes from an operating structure. Often there will also be harmonics arising e.g. 
from rotating parts of the structure. A harmonic is easily confused with a modal peak if not special 
measures are taken to avoid mistakes. The reason is that a harmonic appear as a narrow peak in the 
spectral density functions, thus the peak will also be present in the singular values.  
 
The best way to discriminate harmonics is by the statistical characteristics of the response in a narrow 
frequency band around a harmonic peak. It is well known that the statistical properties of a harmonic 
are very different from the properties of a stochastic response. Due to the central limit theorem, and 
the fact that in practice a structure is loaded by many stochastically independent forces, the stochastic 
distribution of a modal response will be close to Gaussian. Further, the distribution of a harmonic is 
very different from Gaussian since it has two distinctive peaks where the distribution goes to infinity; 
see Bendat et al. [4]. In Jacobsen et al [5] it is shown how to use the kurtosis to discriminate between 
modal peaks and harmonic peaks.  
 
The kurtosis γ of a stochastic variable x provides a way of expressing how peaked or how flat the 
probability density function of x is. The kurtosis is defined as the fourth central moment of the 
stochastic variable x normalized with respect to the standard deviation σ as follows  
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For zero-mean Gaussian distributed data with unit standard deviation Kurtosis is γ = 3, whereas it is γ 
= 1.5 for sinusoidal distributed data normalized to a standard deviation of 1. This fact is used in the 
harmonic detection technique described further in Jacobsen et al [5].  
 
 



2.5 The Automatic Approach 
 
For a search set of interest, which usually will be maximum singular values at all discrete frequencies 
between DC and the Nyquist frequency, the following procedure is our proposal for an automatic 
FDD approach: 
 

1. Identify a peak on the first singular value line representing a maximum 
2. Check if the peak is likely to be physical 
3. If so, establish the modal domain 
4. If not define a noise domain around the peak 
5. Exclude the modal domain or noise domain from the search set 
6. Continue until the search set is empty, the peak is below the predefined excitation level, or a 

specified number of modes has been estimated 
 
The key point of the algorithm is point 2). As described earlier, it is essential at this point to include a 
criterion concerning the correlation between neighboring points as described by the modal coherence 
function d1. Also it is essential to be able to distinguish between a harmonic peak and a modal peak. 
Additional criteria can be based on for instance the size of the modal domain being larger than a 
certain value or the damping estimate being below a certain value. If we are looking for a certain 
number of modes, we can pick the modes that have the largest modal domain, or the modes that have 
the largest excitation level. 
 
For basic FDD we are satisfied when the peak is identified as a modal peak, and the corresponding 
mode shape vector is estimated. For the enhanced version of FDD an additional step is required. It is 
necessary to estimate the auto correlation function for the modal coordinate, Cqq, defined in equation 
(3), see e.g. Brincker et al [1],[2]. From this function it is possible to automatically extract the natural 
frequency and the damping ratio. 
 
3 SSI Multipatch Merging 
 
3.1 Algorithm 
 
The multipatch subspace approach has been presented in Mevel et al. [6]. It is based on the fact that 
merging Hankel matrices from different measurement setups is only possible if setups share common 
reference sensors and the excitation is the same for all setups. If the first requirement is impossible to 
be avoided and is common for many identification methods, it has been shown that the second 
requirement can be dropped if proper normalization is applied to the Hankel matrix of each setup. 
 
From the state space model,  
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one can define the following correlations between the reference sensors itself and between the 
moving and reference sensors for record j at time lag i, we got the matrix relation involving Gj
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The Hankel matrix corresponding to the reference sensors of record j is  



                                                   (16)  
 

By juxtaposing the different reference Hankel matrices from all records, we got the merged reference 
Hankel matrix, built on the concatenation of the different autocorrelations, and thus we end up with 
the following decomposition 

    (17) 

                                                                 
Finally, we obtain the different controllability matrices in the same modal basis by splitting the 
C(F,G) matrix in the same manner G is splitted. Those matrices are also involved in the 
decomposition of   , where both left and right terms are different, and thus 
the matrices can not be stacked without proper normalization. By renormalizing each Hankel matrix 
like       
                                                        (18) 
 
We can now stack them and get the matrix , where  is assumed to be 
the best conditioned controllability matrix. Finally, we do the SVD as usual for the subspace method.  
 
This approach has been coupled with the usual subspace approach where identification is performed 
on each setup, and modes are extracted automatically. Usually subspace diagrams are noisy, but the 
multipatch diagram is much clearer, allowing determining the structural modes easily. By coupling 
both diagrams, using some automated extraction approach described below, one can extract modes 
and reconstruct modes and mode shapes. Future works will focus on improving the numerical 
efficiency of the method. 
 
3.2 The Automatic Approach 
 
The identification provides a stabilization diagram. This diagram must be analyzed in order to 
distinguish physical from computational modes. The algorithm must also provide the frequency, the 
damping and the mode shape. 
 
The first step of the automated extraction procedure is searching for alignments using graph theory. 
Those alignments are defined neighborhood by neighborhood looking at the order of the points. We 
consider every point of the stabilization diagram as the vertex of a directed graph. For each point of a 
given order we define an edge from this point to the nearest point at an inferior order, and another 
edge from this point to the nearest point at a superior order. 
 
The key of the algorithm is to define the nearest point. Each point of the stabilization diagram is 
associated to an order, a frequency, a damping and a mode shape.  For any two points we can define 3 
distances (frequency, damping, MAC). The nearest point will be the point which is the nearest for at 
least 2 distances. As the diagram is associated with a directed graph, it is trivial to extract connected 
sub graphs using graph theory. Each sub graph defines an alignment. For each alignment,  all  sub 
alignments of a given length are considered, in order to find the most linear part. From this linear 
part, we will try to extend it to a longer alignment. The automated extraction algorithm need only the 
minimum length of an alignment as input parameter. This algorithm is very fast and very robust, so 
that it can be used for a monitoring routine. 



4 Example – Z24 Highway Bridge 
 
The two automatic approaches have been tested on a fairly large set of real data. The data is from the 
Z24 Bridge of the SIMCES project, and the test case used is the one called Progressive Damage Test 
no. 10. This case consists of 9 setups each with 33 channels, except setup 5 having only 27 channels. 
Five common reference channels where used and these have been selected as the Projection Channels 
in the analysis. The data has been sampled at 100 Hz with a measurement time of 655 seconds, 
resulting in 65516 samples per channel.  
 
4.1 Results of the Automatic Frequency Domain Decomposition Technique 
 
The results in this section are obtained using the Automatic Modal Analysis component of the 
ARTeMIS Extractor 4.1. This component implements the automatic FDD approach described in 
section 2.5 using the indicators presented in section 2.4. The thresholds 1Ω and have both been 
set to 0.8. In the figure below the modal coherence is shown is the light blue area on top of the 
diagram. The top of the diagram corresponds to a modal coherence of 1 and the bottom to 0. 
Especially around the first mode it is seen that the modal coherence is almost 1 for a fairly broad 
frequency range. The modal domains of the different modes are displayed in light green, and again 
this domain is quite large for the first mode as well.  
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Figure 4.1: The Automatic Frequency Domain Decomposition. The red indicator shows the identified modes. 
The modal coherence is shown in light blue, and the modal domains in light green. 
 
It can also be observed how the automatic algorithm is capable of detecting modes at places where 
the peaks are not very distinct, as with the last of the modes in the above diagram. Below, the 
corresponding mode shapes of all the modes are displayed: 
 
The total processing time from starting uploading data and to the final identification og the presented 
modes is around 2-5 minutes depending on the PC. But even for such a large set of data, it is possible 
very quickly to have results of the most well-excited modes. 
 



 

 

 

 
Figure 4.2: The mode shapes of the 8 identified modes. 
 
4.2 Results of the Automatic SSI Multipatch Merging Technique 
 
In the below figure the results is the SSI analysis are shown. 

  
Figure 4.3: Multipatch stabilization diagram versus a traditional subspace stabilization diagram. 



Figure 4.3 compares the stabilization diagram of the multipatch technique with the traditional 
correlation driven SSI method of one of the nine setups. The multi patch stabilization diagram is 
much clearer, and therefore of course much easier to work with for the automatic mode identification 
algorithm, that in this case identifies the six modes below 14 Hz.  
 
5 Conclusions 
 
The problem of doing automatic modal parameter extraction has been addressed in this paper. Two 
new and completely different methods have been presented.  
 
The first is the automated Frequency Domain Decomposition technique, where the peak picking has 
been automated in a robust way by the introduction of modal coherence, modal domain and harmonic 
indicators. That it is robust refers to that the technique is able of distinguish between peaks of 
physical modes and peaks of non-physical contents and noise. 
 
The second is an automated version of the multipatch covariance driven Stochastic Subspace 
Identification technique. The multipatch technology results in just a single stabilization diagram even 
when multiple setups of data are analyzed. In addition this stabilization diagram is much clearer as 
the only content that are the same between the different setups are the physical information of the 
system being measured. The noise differs from setup to setup, and is therefore suppressed in the 
multipatch stabilization diagrams. It has been described how an automatic mode selection can be 
implemented. 
 
Finally, the two different techniques has been demonstrated on a large set of data. 
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