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ABSTRACT 
The paper presents how direct estimation of the modal coordinate time series can be performed using a time 
domain subspace based system identification method. The method overcomes the traditional limitation on 
maximum number of modal coordinates to be estimated being less or equal to the applied number of sensors. 
This is achieved by utilizing the information on system order inherent in the state sequence applied as basis for 
the subspace identification of the state space system matrices. 
 

NOMENCLATURE 
KCM ,,  mass damping and stiffness matrices 

subscripts s or ,f refers to structure 
properties and force related 
properties respectively 

 EDBA ,,,  state space system matrices, 
continuous time versions, subscripts 
a,v,q relates to acceleration, velocity 
and displacement 

( ) ( ) ( )ttt qqq &&& ,,
 

vector of generalised time dependent 
displacements, velocities and 
accelerations 

 
gKEDBA ,,,,

 

state space system matrices, 
discrete time, innovation form 
versions, including Kalman gain 

( )
( )t

t

s ,,,
,,,,

qqqf
qqqf
&&&

&&&
 

total dynamic forcing function,  
 
stochastic part and  

 ( ) ( )tt xx &,  state vector, state vector time 
derivative 

( ) ( )tt rd ff ,  deterministic (measured) part, 
and residual (noise) part 

 ( ) ( )tt uy ,  system output and system input 

( )td uB ,  input (load) influence matrix and 
deterministic inputs 

 ( ) ( )
( ) ( )tt

tk m

wv
ee

,
,,
 

innovation and measurement noise, 
 
state output and process noise 

YY ˆ,  matrix of output vectors, matrix of 
estimated k-step ahead predicted 
outputs 

 XX ˆ,  state sequence matrix, true and 
estimate 

U  matrix of deterministic input vectors  
iW  weighting matrix 

s
L

d
L SS ,  coefficient matrices for deterministic 

and stochastic excitation in the 
extended state space model 

 
LO  extended observability matrix 

111 ,, VSU  matrices of an SVD  G  state estimation coefficient matrix 

R  invertible scaling matrix    
t  continuous time variable  

0t  initial time 

k  discrete time variable  rm,  number of measured outputs and 
inputs 

JLN ,,  number of samples, future horizon 
for identification, past horizon for 
instrumental variables 

   



 

 

1, −ΨΨ  right and left eigenvector matrix  T
jj ξψ ,  column vectors of right and left 

eigenvector matrices respectively 
Λ  diagonal matrix of complex 

eigenvalues 
 λ  complex eigenvalue 

jω  is the damped circular natural 
frequency of mode j 

 
j0ω  is the undamped circular natural 

frequency of mode j 

jα  is the damping factor of mode j  
jζ  is the damping ratio of mode j 

( )0tjη  is the initial complex modal 
coordinate of mode j corresponding 
to the eigenvalue pair λ λj j, *  and the 
initial state conditions x( )t0  

 
jϕ  is the initial modal phase of mode j 

i.e. ( )( )0arg ta jj =ϕ  

T  Super script T indicates transpose of 
a matrix 

 
jkθ  is the phase of component k of right 

state space eigenvector j 
*  Superscript * indicates complex 

conjugate 
   

⊥  Super script ⊥  indicates orthogonal 
complement of a matrix 

 { }oE  expectation operator 

 1−=i   ô  ^ over a parameter indicates 
estimate 

 

INTRODUCTION 
Modal analysis and system identification of vibrating structures have so far mainly dealt with the identification of 
natural frequencies, damping properties and mode shapes. However, when monitoring structures responding to 
natural excitation it is in many cases of great value to know the vibration amplitude for each excited mode. The 
standard straight forward way of achieving this is by decoupling the measured response using either experimental 
modeshapes or modeshapes obtained from a numerical model, as shown by e.g. Kaasen [1] or Hjelm et al [2]. 
However, one severe drawback with the methods presented so far is that only as many modal coordinates as 
there are sensors can be identified simultaneously. The present paper will introduce a method for determination of 
the modal coordinates where this restriction is lifted. The method which is based on the framework of subspace 
system identification makes it possible to simultaneously determine as many modal coordinates as there are 
identified natural frequencies and corresponding mode shapes in the data. The method was first applied for modal 
decomposition of the measured response of a drilling riser, Hoen and Moe [3]. However, in that paper details on 
the actual method where not given. In this paper we will give some details of the developed method for modal 
coordinate estimation. 
 

THE EQUATIONS OF MOTION FOR SYSTEM IDENTIFICATION OF VIBRATING STRUCTURES 
The dynamic response of a structural system can generally be modelled by a second order differential equation of 
dimension ( )nn × as follows: 
 
 ( ) ),,,(),,,()()()( tttttt sdsss qqqffqqqfqKqCqM &&&&&&&&& +==++  (1) 
 
where qq &&& , and q are vectors of generalized acceleration, velocity and displacement, respectively. ),,,( tqqqf &&&  is 

the forcing function which contains known (i.e. measured and thereby deterministic) excitation, ( )tdf , and 

unknown (stochastic) excitation, ( )ts ,,, qqqf &&& . ss CM ,  and sK  are the mass, damping and stiffness matrices of 

the structure. The stochastic part of the forcing function ),,,( ts qqqf &&&  can be decomposed into a sum of elements 
being proportional to the acceleration, velocity and displacement respectively and a residual which contain all the 
other load components, also any non-linear effects: 
 
 )()()()()()()()( tttttttt rdsss fffffqKqCqM qqq ++++=++ &&&&&&  (2) 



 

 

The first three elements of the right hand side of (2) are transferred to the left-hand side of the equation and 
expressed in terms of the acceleration, velocity and displacement respectively 
 
 ( ) ( ) ( ) )()()()()()()()( tttttttt rdfsfsfs ffqKKqCCqMM +=+++++ &&&  (3) 
 

( )tfM , ( )tfC  and ( )tfK  are mass (inertia), damping and stiffness effects caused by the external loading. In 
case of a structure submerged in water, the effects are known as hydrodynamic added mass and damping, and 
hydrostatic stiffness effects. The force related parts of the mass, damping and stiffness matrices are generally not 
time invariant. Therefore the general equation will contain time varying coefficient matrices. However, it is 
reasonable to assume that they may be regarded as approximately constant. This is at least reasonable in a time 
scale related to the time characteristics of the system, i.e. natural periods. Then we obtain the following second-
order differential equation 
 
 )()()()()( ttttt rd fuBKqqCqM +=++ &&&  (4) 
 
The mass matrix M  is assumed positive definite. The damping matrix C  may contain both viscous damping 
terms and gyroscopic terms. Gyroscopic terms may occur for e.g. risers with internal flow, and likewise for towed 
cables, se e.g. Blevins [4], and of course for rotating shafts etc. Thus, the damping matrix may be non-symmetric. 
The stiffness matrix K  contains general stiffness properties. Normally the stiffness matrix will be symmetric. 
However, in certain flow-induced vibration problems, e.g. the classical flutter problem of airfoils, the equation of 
motion may be formulated to yield a non-symmetric stiffness matrix. dB  is an input influence matrix 

characterising the locations and type of deterministic inputs )(tu . 
 
The response of the dynamic system can be measured by e.g. accelerometers, inclinometers, rotation rate 
sensors, strain gages etc. A matrix output equation can thus be written as: 
 
 )()()()()( ttttt mqva eqDqDqDy +++= &&&  (5) 
 
where the matrices va DD , and qD are output influence matrices for acceleration, velocity and displacement 

respectively. )(tme  is white measurement noise. The output influence matrices describe the relationship between 

the vectors qqq ,, &&&  and the measurement vector y . Thus, a measured output may be a combination of e.g. 
acceleration and rotation. This is in fact the case for accelerations measured with linear accelerometers mounted 
perpendicular to the longitudinal axis of a deep water riser as applied in offshore oil and gas exploration and 
production. For motions with a long period, the influence of the acceleration of gravity (the ” ( )θsing⋅ ” 
component) may exceed the lateral acceleration in magnitude. This needs special attention during analysis of the 
measurements. 
 
In the case of interpreting system matrices identified or estimated from measured response, i.e. system 
identification, the system matrices cannot be assumed symmetric even if the tested system should yield 
symmetric matrices in theory. One major reason for non-symmetry in the identified matrices is that measurements 
always are imperfect and noisy. Thus, only under very special circumstances the eigenvalue problem of a system 
given by (4) will become symmetric and positive definite and thereby have real eigenvectors. In the general case 
complex eigenvectors occur.  
 
The eigenvalue problem corresponding to (4) can be solved in two ways, either by direct solution of the 
corresponding quadratic eigenvalue problem or as will be done here, by recasting (4) into a first order system in 
state space form. The state space model is a robust and good engineering model with a good numerical 
foundation for treating linear vibrating systems and it is as easy to understand as the second order approach. 



 

 

A STATE-SPACE MODEL 
Identification of the system parameters KCM ,, , which in modal form are given by natural frequencies, modal 
damping ratios and mode shapes are not straightforward. The system identification methods applied in 
experimental modal analysis today are to a large extent based on a reformulation of the second order model (4) 
into a first order state-space description. See e.g. Juang [5]. In particular state space formulations have been 
applied for the purpose of system identification of offshore structures; see e.g. Hansteen [6], Hoen [7], Prevosto et 
al. [8]. Procedures for transformation of the second order model to state- space form can be found in textbooks on 
structural dynamics or system identification theory, see e.g. Hurty and Rubinstein [9], Juang [5] or Meirovitch [10]. 
By such procedures it is easy to see that it is always possible to represent a linear system given by (4) and (5) in 
state space form as follows: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tttt

tttt
vEuDxy
wBuAxx

++=
++=&

 (6) 

 
With reference to (4), (5) and (6) the following definitions apply 
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 is the state vector 
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A 11  is the state transition matrix 
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B 1   is the deterministic input matrix 

 [ ]CMDDKMDDD 11 , −− −−= avaq  is the output matrix 

 da BMDE 1−=  is the deterministic feed-through matrix 

 ( ) ( ) ( )ttt mda ewBMDv += −1  is the state output noise 
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



−

= − t
t

rfM
0

w 1  is the state process noise 

 
In case the state process noise ( )tw  is non-white, for practical purposes a state-space model can model the 
noise to yield a residual noise process that is white. This will add noise states to the state vector and 
corresponding terms to the matrices DB,A, . See e.g. Hoen [7] for details. 
 
Other forms of the state space representation are also possible depending on the definition of the state vector and 
the properties of the matrices CM,  and K of (4). See e.g. Hurty and Rubinstein [9] or Laub and Arnold [11]. 
However, choice of formulation is only a matter of importance with respect to numerical implementation. They will 
all be related by simple coordinate transformations. 
 
A frequently applied alternative formulation to (6) in discrete time is the innovation form; see e.g. Ljung [12] 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )kkkk

kkkk g

euExDy

eKuBxAx

++=

++=+1
 (7) 

 
where gK is the Kalman gain matrix and the innovation is defined as ( ) ( ) ( ) ( ){ }1E −−= kkkk yyye  

where { }oE is the expectation operator. The system matrices EDBA ,,,  are the discrete time equivalents of the 



 

 

matrices EDBA ,,,  of (6). The innovation formulation is particularly useful for estimating the state vector time 
series, since it is known to yield optimal estimates of the state vector, see e.g. Maybeck [13]. 

THE STATE SPACE MODAL FORM 
The state space models (6) or (7) can be decoupled into a set of 2n uncoupled equations applying the eigenvalue 
decomposition of the state transition matrix, see Hoen [14, 3] for details. 
 
 ΛAΨΨ =−1  (8) 
where 
 
Λ  is the diagonal matrix of eigenvalues of A  

ΨΨ ,1−  is the left and right eigenvector matrices of A  
 
The eigenvector matrix of the state space model can be partitioned as 
 

 







=

ΛΨ
Ψ

Ψ
q

q
 (9) 

 
where qΨ  is the components of the eigenvectors corresponding to the generalised displacements. 
Thus we obtain the following modal state space description by applying (8) to e.g. (6) 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tttt

tttt
vEuηDΨy

wΨBuΨΛηη
++=
++= −− 11&

 (10) 

where 
 ( ) ( )tt xΨη 1−=  (11) 
 
is the complex vector of state modal coordinates. 
 
It is well known that the solutions to (6), (7) and (9) are composed of a homogeneous part associated with the 
initial conditions, and a steady state solution given by the future deterministic input and process noise. The 
solution to the homogeneous part is useful for interpretation of resonant vibrations such as e.g. lock-in Vortex 
Induced Vibrations of deep-water risers. The solution to the free vibration problem associated with (6) or (7) is 
known to be 
 ( ) ( ) ( )0

0 tet tt ηΨx Λ −=  (12) 
 
where ( )0tη  is a vector of complex coefficients or initial modal weights 

INTERPRETATION OF STATE SPACE MODAL RESPONSE 
The magnitude and the phase angle of the complex initial modal coordinate interpret as the initial modal amplitude 
and the initial modal phase angle. The elements of the initial modal coordinate vector ( )0tη  can therefore be 
written as 
 ( ) ( )00 tt T

jj xξ=η  (13) 
 
where T

jξ  is the column vectors of the left eigenvector matrix 1−Ψ . In matrix form the free vibration state 
response is given 
 
 ( ) ( ) ( ) 00

1 ,0 tttet tt ≥= −−Λ xΨΨx  (14) 



 

 

Assume for simplicity of notation that Λ  contains only complex eigenvalues, which then will appear in pairs as 
( )*, jj λλ , where the asterisk denote complex conjugate. The free vibration response can then be expressed as the 
following sum over n components 
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Consider now the polar form of the complex numbers in (15) 
 

 

( ) ( ) ( )
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0
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ttett

e
eee

jj
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jj
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j
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ϕ
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==

==
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 (16) 

 
Substituting for (16) in (15) results in the following expression for element k of the free vibration state response 
vector 
 

 ( ) ( ) ( ) ( ) ( )( )∑
=

−− ++−=
n

j
jjkj

tt
jkjk tttettx j

1
000 cos2 0 ϕθωψη α  (17) 

 
The quantities that appear in (17) interpret as follows: 
 

jω  the damped natural frequency of mode j 

jjj ζωα =  the damping coefficient, with jζ  the modal damping ratio of mode j 

jkψ  the magnitude of component k of right state eigenvector j 

jkθ  the phase of component k of right state eigenvector j 

( )02 tjη  the initial modal amplitude of state mode j corresponding to the eigenvalue pair ( )*, jj λλ  and the 

initial condition ( )0tx  

( )0tjϕ  the initial modal phase of state mode j corresponding to the eigenvalue pair ( )*, jj λλ  and the initial 

condition ( )0tx  
 
Thus, a generally damped structural system decouples into n real state modes, each with 2n components 
corresponding to generalised displacements and velocities. The modes are defined by means of the complex 
eigenvectors of the system containing magnitudes and phase angles. The appearance of spatially varying phase 
angles admits travelling wave behaviour of the mode shape as the oscillation proceeds through a cycle. This is a 
major and important difference from the spatially synchronous oscillation found for classically damped systems. 
 
We also see that the modal decomposition of a measured response vector time series ( )ty  can be obtained from 
estimates of the state-space system matrices and the corresponding state vector time series. Furthermore, the 
complex modal coordinates which determine the modal amplitude and the modal phase can be defined by means 
of the left eigenvectors and the state vector at time t0, i.e. the initial condition. This is obtained because of the 
biorthonormality properties of the complex eigenvectors and the system matrices. 



 

 

SUBSPACE IDENTIFICATION OF THE STATES 
As seen in the previous section a key to estimation of the modal coordinate time series is the availability of the 
state space vector time series. State space vector time series (or state sequences) are readily obtained through 
(stochastic) subspace system identification algorithms. Alternatively, an estimate of the state space sequence can 
be obtained using a Kalman filter approach when the state space system matrices including the Kalman gain 
matrix are known. 
 
During the last decades considerable effort has been put into construction of algorithms for estimation of the 
parameters in MIMO (multi-input multi-output) state-space systems. In particular the so-called subspace methods, 
also known as projection methods, have drawn considerable interest. Over the years several authors have 
presented methods; for the deterministic case, the stochastic case and also for the combined case with both 
deterministic and stochastic input. See e.g. Ho and Kalman [15], Kung [16], Hoen [7], Prevosto et al [8], Juang [5], 
Van Overschee and De Moor [17], Ljung and McKelvey [18], Di Ruscio [19], Ljung [12]. 
 
A basic idea behind several subspace methods is to first estimate the state vector time series x(t), and then by 
linear least squares procedures estimate the system matrices. An estimate of the state vector time series may be 
constructed directly from the response measurements or from the corresponding covariance functions by 
application of standard linear algebra decompositions such as QR and/or SVD. From these decompositions, it is 
also possible to obtain the system matrices directly without actually computing the state vector time series. 
 
Some of the algorithms presented in the literature are designed for impulse response type data, e.g. the ERA 
algorithm of NASA, see e.g. Juang [5]. Other algorithms can only handle stochastic systems and other again 
works for deterministic systems, i.e. systems with measured input. However, the latest developments have led to 
a unification of the approaches and the construction of algorithms that handle the combined deterministic-
stochastic estimation problem and each of them as well. The trend is also towards algorithms that work directly on 
the data avoiding the sometimes numerically ill conditioned covariance estimation step. 
 
The DSR (Deterministic Stochastic Realization) algorithm of Di Ruscio [19] has some features that are very 
attractive for application to measured structural response. All the system matrices including an estimate of the 
state vector time series can be obtained directly from standard linear algebra decompositions (QR and SVD) of a 
data matrix constructed from the input and output vector time series. The Kalman gain matrix is also computed 
directly from these decompositions without solving any matrix equations like e.g. nonlinear Ricatti or Lyapunov 
equations. 
 
The stochastic state space identification methods apply equations of the following type for estimation of the state 
space vector time series, Di Ruscio [19], Ljung [12] 
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where 
 
Y  is a matrix of stacked measured output vectors 
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X  the state sequence matrix defined by 
 
 [ ]121 −+++= Kkkkk xxxxX L  (20) 
 



 

 

U  is a matrix of stacked measured input vectors 
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V  is a matrix of stacked innovations noise vectors is defined by 
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LO  is the extended observability matrix for the pair ( )AD,  
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and the coefficient matrices for the deterministic and stochastic excitation 
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In the definitions above the following subscripts are applied: 
 
k  is the discrete time variable 
L  is the future horizon applied for identification 
r  is the number of measured inputs 
m  is the number of measured outputs 

1+−−= kLNK  is the number of columns in data matrices. VUY ,,  
N  is the number of samples in the time series 



 

 

Equation (18) can be applied to obtain estimates of the state sequence. The challenge is to remove the effects of 
the two input terms U  and V  from the measured output data matrix. The U  term is removed by applying a 

projection matrix ⊥U  which is the orthogonal projection onto the null-space of the input matrix U , i.e.  
 

 ( ) UUUUIU
1−⊥ −= TT  (26) 

 
The V  term is a noise term matrix and is removed by using an approach similar to that of the instrumental 
variable method. The basic idea is to correlate away the noise contribution by using a suitable matrix, see e.g. 
Di Ruscio [19] or Ljung [12] for details. Choosing the past inputs and outputs as instrumental variables give the 
following weighting matrix 1W  
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J  is the past horizon applied for removing the noise components of the outputs. Other possible choices for 
instrumental variables are past outputs alone or past inputs alone. Then by (18) it can be shown that there is a 
relation between states and outputs as follows, Di Ruscio [19]: 
 
 T

L
T O 11 WXUWYU ⊥⊥ =  (28) 

 
We will present a way of finding the states based on (18) and (28) according to Ljung [12]. After some 
manipulations we finally arrive at an equation of the following type for estimating the states 
 
 YX ˆˆ G=  (29) 
where  
 
X̂  is the matrix of state vector estimates 
Ŷ  is the matrix outputs corrected for the influence of the measured inputs and the innovation noises. 
 
Ŷ  may be computed as follows, but other possibilities also exist: 
 

 ( ) 1
1

111
ˆ WWUWWYUY

−⊥⊥= TT  (30) 
 
The coefficient matrix G  is obtained from singular value decomposition (SVD) of the projected and weighted data 

matrix Ŷ  
 TVSU 111

ˆ ≈Y  (31) 
as 
 TURG 1

1−=  (32) 
 



 

 

where the invertible matrix R  defines the relation between the left singular matrix 1U  and the observability matrix 

LO . Typical choices for the matrix R  are either 1, SRIR ==  or 2/1
1SR =  

 
Finally one must assure that the correct overall scaling of the states has been obtained, e.g. by application of (7), 
to obtain correct magnitude of the modal coordinate estimates. 
 

CONCLUSIONS 
It has been shown how the time series of the modal coordinates are easily computed using the estimate of the 
state vector time series computed by a subspace identification approach. The modal coordinate estimation 
method allows estimation of as many modal coordinates as there are identified modes and overcomes the 
traditional limitation that the number of modal coordinates that can be estimated are equal to the number of 
measurements. 
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