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Abstract 

In this paper it is shown that stress histories can be estimated with high accuracy by integrating measured 
accelerations to obtain displacement and then performing a modal decomposition of the so estimated 
displacements. The relation between the modal coordinate and the stress in an arbitrary point is established by a 
finite element model. It is shown, that when performing the modal decomposition, either experimental mode 
shapes or numerically estimated mode shapes can be used. However, it is important to verify that the numerical 
modes correspond reasonably well to the experimental modes. It is shown that the so estimated stress histories 
can replace strain gauge measurements in many cases, and it allows for an accurate estimation of fatigue 
damage. 

Nomenclature 

Φ Mode shape matrix. 
∆σ Stress range. 
D Damage. 
f Natural frequency. 
N Number of stress cycles. 
q(t) Time depend modal coordinate vector. 
y(t) Time depend displacement vector. 
exp Experimental determined value. 
FE Numerical (finite element) determined value. 
 



1. Introduction 

Determination of stress histories in dynamic sensitive structures is usual assigned with large uncertainty, since a 
conventional determination of stress histories requires information about e.g. the load history and transfer function 
– both assigned with some uncertainty. Minimizing these uncertainties can simply be done by determine the 
stresses experimentally. Experimentally determined stresses are normally determined from strains measured with 
strain gauges, but fatigue sensitive joints are often located in sections where mounting of strain gauges are 
difficult or even impossible, e.g. below water on offshore structures. Furthermore strain gauges are not reliable for 
long time measurements and are, for this reason, inapplicable for determination of the stress histories. 

By determining the stress histories in structures by natural input modal analysis two important advantages are 
introduced. First, the method is based on measurements with accelerometers, which are known as reliable for 
long time measurements. Second, by introducing a finite element model, the stress history can be calculated in 
any arbitrary point of a structure when accelerations are measured in only a few points of the structure. 

The theory of determination of stress histories by natural input analysis is explained in details and validated 
through experiments in Graugaard-Jensen et al. [1]. In this paper the theory is summarized and the main results 
of the experiments are shown. More results can be found in Graugaard-Jensen et al. [2]. 

2. Theory 

The accelerations of a structure, exposed to a stochastic loading, are measured in a few easily accessible points 
of the structure. A modal identification is performed to obtain the natural frequencies fexp and mode shapes Φexp of 
the structure. The identification may be performed by e.g. Stochastic Subspace Identification (SSI), cf. Van 
Overschee and De Moor [3], or Frequency Domain Decomposition (FDD), cf. Brincker et al. [4]. The FDD is used 
in this paper as implemented in the ARTeMIS Extractor software. The FDD is based on calculation of Spectral 
Density Matrices of the measured data series by discrete Fourier transformation. For each frequency line the 
Spectral Density Matrix is decomposed into auto spectral functions corresponding to a single degree of freedom 
system (SDOF). 

A finite element model is calibrated to obtain 

Φexp = A ΦFE (1) 

where A is an observation matrix containing zeros and ones. 

The measured accelerations are integrated twice to obtain the displacements yexp(t). The integration is performed 
by use of Simpson’s Rule, cf. Kreyszig [5], and the resulting numerical drift is removed by digital high-pass 
filtering, e.g. by use of Butterworth filters. 

The obtained displacements yexp(t) are expanded in modal coordinates q(t) by use of either the experimental 
mode shapes Φexp  

yexp(t) = Φexp q(t) (2) 

or numerical mode shapes ΦFE

yexp(t) = A ΦFE q(t) (3) 

From the modal coordinates and the numerical mode shapes, the response yFE(t) in any arbitrary point of the 
structure is simply calculated by 

yFE(t) = ΦFE q(t) (4) 

and the strains and far field stresses can be calculated in any point of the structure by traditional finite element 
calculations. The hot spot stresses are calculated by applying the finite element relationship between the far field 
stresses and the hot spot stresses. 

Use of the experimental mode shapes in the modal expansion may seem as the most obvious, since the 
response is experimental determined, but in some cases equation (1) cannot be fulfilled. If e.g. the structure is 



symmetric, some of the identified mode shapes may be unstable and the direction may differ from the numerical 
mode shapes. In such a case, the modal expansion must be performed by use of the numerical mode shapes. 
However, it is important that the FE-model is always correct calibrated. The calibration is checked by comparison 
the experimental and numerical natural frequencies and by calculating the Modal Assurance Criteria (MAC) 
between the experimental and numerical mode shapes. The MAC varies between zero and one, where one 
denotes full correlation of the modes. The MAC between the ith experimental and numerical mode shape is 
calculated as 
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The MAC between Φexp and ΦFE should generally be high to obtain accurate results, unless Φexp is unstable. 

If the number of mode shapes of the system equals the measured degrees of freedom, then equation (2) or (3) is 
solved directly. If the number of measured degrees of freedom exceeds the number of mode shapes, the equation 
is over determined and is solved by linear regression, e.g. the Least Square method. 

If the number of mode shapes exceeds the number of measured degrees of freedom the equation is under 
determined and must be divided into sub-systems. The dividing into sub-systems may be performed by digital 
filtering or directly in frequency domain by considering the same problem frequency range by frequency range. 
The division into sub-systems shall furthermore ensure that mode shapes with high correlation is not included in 
the same sub-system. High correlated mode shapes included in the same sub-system may result in error on the 
calculated modal coordinates, resulting in large errors on the following calculation of the stress history, cf. 
Graugaard-Jensen et al. [1]. The correlation is checked by calculating the MAC. 

3. Introduction to Experiments 

Two experiments are performed; an experiment on a laboratory structure and an experiment on a lattice tower, cf. 
Figure 1. The laboratory structure is a 2 m high cantilever beam with a mounted beam and weight on the top to 
induce torsion modes. The purpose of the experiment is to demonstrate that the stress history in the structure can 
be calculated in any point with sufficient accuracy. This is demonstrated by simultaneous measuring strains in two 
sections on the lower part of the structure and accelerations on the upper part of the structure. The stresses in the 
lower part of the structure are subsequently calculated from the strain gauge measurements and from the 
acceleration measurements and the stress histories are compared. 

For simplicity, in the rest of this paper the stress calculations based on the strain gauges measurements are 
referred to as “measured stresses”, and the stress calculations based on the acceleration measurements (natural 
input analysis) are referred to as “calculated stresses”. 

The lattice tower, located near the Structural Research Laboratory of Aalborg University, is a 20 m high welded 
structure with a constant width of 0.9 m. Plywood plates are mounted on the upper 1.5 m of the structure to 
increase the wind load. The purpose of the experiment on the lattice tower is to verify that the method produces 
satisfying results on a real structure exposed to stochastic loading. Strains and accelerations are measured using 
same approach as used for the laboratory structure and the measured and calculated stresses are compared. 
Furthermore, the uncertainty on the calculated stress history is defined by comparison of the measured and 
calculated damage. 
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re 1 (Left) Laboratory structure, (center) lattice tower, (right) base of lattice tower. Red and blue circles
ate location of strain gauges and accelerometers respectively. 
aboratory Experiment 

est Program for Laboratory Experiment 

lerations are measured in four sections on the upper part of the structure. In each section the measurements 
erformed in three points, making it possible to determine rigid-body motion and torsion. The strains are 

sured in two sections on the lower part of the structure with single 120 Ω strain gauges. The strain gauges 
ounted on each of the four sides of the profile 0.2 m and 0.7 m above the support, measuring in the axial 

tion of the profile. The dynamic load on the structure is generated by tapping on the structure with a rubber 
mer, and random blows are applied all over the structure to excite all modes. 

pilot experiment is run in two stages. In stage one the modal properties of the structure is determined and 
accelerations are sampled. Accelerations are sampled with 512 Hz in 500 sec in two sections (six channels) 
time. In stage two both accelerations (six channels) and strains (eight channels) are sampled with 512 Hz in 
operation in approximately 10 sec. These measurements are subsequently used for comparison of measured 
calculated stresses. 

structure is modeled in the finite element program ANSYS by 20-node isoparametric elements with three 
ees of freedom (d.o.f.) per node. The model is calibrated by applying springs in the joints in the model, so 
the numerical mode shapes ΦFE correspond reasonably well to the experimental mode shapes Φexp. 

Data Processing and Results of Laboratory Experiment 

gure 2 the results of the modal identification by FDD is plotted. Nine modes are identified. In Table 1 the 
rimental and numerical determined natural frequencies are listed and compared, and Modal Assurance 
ria (MAC) between ΦFE and Φexp are calculated. The high values of MAC indicate that the FE-model is well 
rated. In Figure 7 the mode shapes are plotted. 



The modal decomposition is performed using Φexp, cf. equation (2), and the response is calculated in the finite 
elements holding the coordinates to the strain gauges by use of equation (4). The stresses in these elements are 
subsequently calculated by traditional finite element calculations, cf. Cook et al. [6]. 

The numerical drift resulting from the integration is 
removed by an 8th order 1 Hz low-pass Butterworth 
filter. 

Since nine modes are presented, but accelerations 
are measured in only six channels at a time, the 
equation system is under determined and must be 
split into two or more sub-systems. It is chosen to split 
the equation system into four sub-systems at 10, 50, 
100 Hz using 8th order Butterworth filters. 

In Figure 3 an example of a stress history for one 
channel is shown. As seen, the calculated and 
measured stresses correspond very well. The two time 
series have different length since the accelerations 
and strains are sampled on two separate systems and 
not stopped at the same time. 

5. Experiment on Lattice Tower 

5.1. Test Program for Lattice Tower 

The vibration monitoring system, composed of six 
Shaevitz accelerometers and eight single 120 Ω strain 
gauges, was installed on the lattice tower for one 
month in the spring 2004. Three accelerometers were 
mounted at the top of the structure, three 
accelerometers near the middle of the structure and 
eight strain gauges were mounted near the support of 
the tower; six strain gauges on the legs 0.4 m above 
the support and two strain gauges on diagonals 1.3 m 
above the support. All strain gauges were measuring 
in the direction of the profiles. 

Figure 3 Example of measured and calculated stress h
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Figure 2 Frequency Domain Decomposition of 
measurements on laboratory structure. Average of 
normalized singular values of spectral density 
matrices, 1024 frequency lines. 

Table 1 Experimental and numerical determined 
natural frequencies, percentage deviation and MAC-
values for pilot experiment. 

Φ 
[–] 

fexp
[Hz] 

fFE
[Hz] 

Deviation 
[%] 

MAC 
[–] 

1 4.25 4.28 0.7 0.9941 
2 4.25 4.29 0.9 0.9816 
3 23.00 23.14 0.6 0.9917 
4 26.75 27.00 0.9 0.9984 
5 67.75 67.70 -0.1 0.9979 
6 72.25 71.72 -0.7 0.9976 
7 108.80 109.74 0.9 0.9915 
8 199.00 195.66 -1.7 0.9846 
9 204.80 202.12 -1.3 0.9962 
istory in laboratory structure. (Left) Entire time series, 



The monitoring system was initially setup to sample continuously one hour every forth hour, and during periods 
with high wind speed the monitoring was running continuously in several hours. In all, 223 hours of 
measurements were recorded. All measurements were sampled with 100 Hz.  

The structure is modeled in the finite element program StaadPro using beam elements with six d.o.f. per node. 
The model is calibrated by applying springs in the 
support of the model. 

5.2. Data Processing and Results of Experiments 
on Lattice Tower 

Eight modes are identified from 30 minutes 
measurement series. In Figure 4 the results of the 
modal identification by FDD is plotted. In Table 2 the 
experimental and numerical determined natural 
frequencies are compared and MAC between ΦFE and 
Φexp are calculated. In Figure 8 the mode shapes are 
plotted. 

The modal identification is performed on different 30 
minutes measurements series with different wind 
speeds and wind directions. By comparison the 
identified mode shapes from the different series, it is 
found that mode shape 1 and 2 are not stable. For this 
reason, the MAC between the experimental and 
numerical mode shape 1 and 2 are low, and the modal 
expansion must be done using the numerical mode 
shapes. 

The numerical drift resulting from the integration is 
removed by a 5th order 0.2 Hz low-pass Butterworth 
filter. 

Since the results are used in fatigue analysis it is 
important to include all the modes that contribute 
significantly to the fatigue damage. These modes are 
identified by calculating the damage vs. the number of 
modes. For instance, the modes of higher order are 
filtered out one by one (or in pairs) by low-pass filtering 
and for each filter step the accumulated damage is 
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Figure 5 Example of measured and calculated stress his
s. 
dB | (1.0 m/s²)² / Hz

Frequency [Hz]
0 10 20 30 40 50-80

-60

-40

-20

0

20

40

Frequency Domain Decomposition - Peak Picking
Average of the Normalized Singular Values of

Spectral Density Matrices of all Data Sets.

 
igure 4 Frequency Domain Decomposition of 
easurements on lattice tower. Average of normalized 

ingular values of spectral density matrices, 2048 
requency lines. 

able 2 Experimental and numerical determined natural 
requencies, percentage deviation and MAC-values for 
xperiment on lattice tower. 

Φ 
[–] 

fexp
[Hz] 

fFE
[Hz] 

Deviation 
[%] 

MAC 
[–] 

1 2.00 2.01 0.5 0.7428 
2 2.02 2.02 -0.3 0.7448 
3 8.08 7.87 -2.5 0.9791 
4 11.47 11.40 -0.6 0.9618 
5 11.49 11.54 0.4 0.9671 
6 26.51 25.75 -2.9 0.8289 
7 27.80 29.49 6.1 0.8714 
8 28.27 30.35 7.4 0.8520 
tory. (Left) Entire time series, (right) zoom in on 315-330 



calculated. If the damage is not reduced significantly 
by a low-pass filtering the filtered modes can be left 
out. In this manner it is found that only the two first 
modes of the lattice tower are participating significantly 
to the fatigue damage. Therefore, the measurements 
are run through an 8th order 5 Hz low-pass Butterworth 
filter and only mode shape 1 and 2 are used in the 
calculations. 

In Figure 5 an example of a 10 min. stress history for 
channel 1 (leg) is shown, comparing the measured 
and calculated stresses. The figure shows that the 
stress histories have been calculated with great 
accuracy and it is verified that the modal expansion 
with use of the numerical mode shapes is applicable. 
In Graugaard-Jensen et al. [1] it is found that main part 
of the deviation between the measurements and 
calculations is caused by a small error on the 
estimated static response. This error can be minimized 
by expanding the static displacements in the complete 
set of mode shapes, thus including high order mode 
shapes.  

Stress spectra are plotted and damage is calculated 
including all 223 hours of measurements. An example 
of such a stress spectrum is plotted for channel 1 (leg) 
in Figure 6, and in Table 3 the damage is listed for all 
eight channels. The damage is calculated with use of a 
linear SN-curve with the parameters log K = 16.786 
and m = 5 and without any cut-off limit, cf. DS410 [7]. 

In inspection planning the uncertainty on the stress 
history is included in a Coefficient Of Variation (COV). 
For offshore structures COV is typically ranging from 0.
reduced to 0.03 for the results of the lattice tower, illustra
the uncertainty is modeled by a normal distributed 95% do

T
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6. Conclusions 

It has been shown that it is possible to calculate stress hi
combining natural input modal analysis with finite eleme
accelerations of the structure only have to be measured 
stresses can be calculated in any arbitrary point of the str
replace strain gauge measurements in many cases and it

The coefficient of variation (COV) on the stress history is 
applied on e.g. offshore structures, the number of inspe
these directly depends on the uncertainty on the stress his
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Figure 7 The nine experimental (top) and numerical (bottom) mode shapes of the laboratory structure. 
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Figure 8 The eight experimental (left) and numerical (right) mode shapes of the lattice tower. 
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