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Abstract 
The development and theoretical background of a new operational modal identification technique, 
named as Frequency-spatial Domain Decomposition (FSDD) is described in this paper. Three 
applications in civil engineering structures for typical purposes, i.e. a. large-span stadium roof for 
verifying finite-element model, a highway bridge for damage detection and a long-span 
cable-stayed bridge for structural health monitoring, are presented. 
1. Introduction 
Experimental modal analysis (EMA) has been widely used for trouble shooting, structural 
dynamics modification, analytical model updating, optimal dynamic design; passive & active 
vibration control, as well as vibration-based structural health monitoring in aerospace, mechanical 
and civil engineering. An array of single-input/single output (SISO), single-input/multi- output 
(SIMO) and multi-input/multi-output (MIMO) modal identification (MID) algorithms in time, 
frequency and spatial domain have been developed in the past three decades. However, traditional 
EMA has some limitations: e.g. (1) artificial excitation is normally conducted in order to measure 
frequency response function (FRF) or impulse response function (IRF),which are typically used as 
primary data for subsequent modal parameter extraction.. Unfortunately, FRF or IRF are very 
difficult, or even impossible, to measure in the field testing or for large structures; (2) In many 
industrial applications, the real operation conditions may differ significantly from those for lab 
testing with artificial excitation; (3) Component, instead of complete system, is tested in the lab 
environment, and boundary condition should be reasonably simulated. 

Operational modal analysis (OMA) of mechanical systems subject to ambient or natural excitation 
under operational condition has recently drawn great attention in civil engineering. OMA is also 
very attractive for aerospace and mechanical engineering due to many advantages, such as: (1) 
OMA is cheap and fast to conduct, no elaborate excitation equipment and boundary condition 
simulation are needed. Traditional modal testing is therefore reduced to be response measurement; 
(2) Dynamic characteristics of the whole system, instead of component, at much more 
representative working points, can be obtained; (3) The model characteristics under real loading 
will be linearized due to broad band random excitation; (4) All or part of measurement coordinates 
can be used as references; the identification algorithm used for OMA must be MIMO-type. As a 
consequence, the closed-spaced or even repeated modes can easily be handled, and hence suitable 
for real world complex structures; (5) Operational modal identification with output-only 
measurements can be utilized not only for structural control, but also in-situ vibration-based health 
monitoring and damage detection of the structures. 



In the 1992’s a Natural Excitation Technique (NExT) was proposed [1]. NExT is based on the 
principle that Correlation Functions (COR) measured under natural, e.g. ambient or operational 
excitation, can be expressed as a sum of exponentially-decayed sinusoids. Modal parameters, i.e. 
natural frequency, damping ratio and mode shape coefficient of each decaying sinusoid are 
identical to the ones of the corresponding structural mode. According to this principle, major time 
domain (TD) MIMO MID algorithms such as PRCE [2], Extended ITD [3], ERA [4] and their 
extension [5], [6] which are successfully and widely employed for traditional EMA, can be adopted 
for operational MID by using COR instead of IRFs. The COR functions can be obtained via direct 
estimation, inverse Fourier Transform from PSD, or via Random Decrement technique from 
random response subjected to broadband natural excitation.  

Many sophisticated TD operational modal identification methods have been proposed in the last 10 
years based on classical and modern system identification theory. NExT-type PRCE and EITD 
found better theoretical explanation based on multi-dimensional, or vector autoregressive moving 
average model (ARMAV) via instrument-variable method (IVM). NExT-type ERA is nothing but 
an implementation of the stochastic realization-based methods [7]. A powerful tool named as 
Subspace State-space System Identification (4SID) method [8] was developed in 1990’s, and 
adopted by modal community afterwards. Stochastic Subspace technique (SST) was then proposed 
for output-only measurements [9]. In contract to classical prediction-error method (PEM), which is 
a typical non-linear identification and therefore computational intensive, SST has many advantages.  

However, all TD modal identification algorithms have a serious problem in model order 
determination. Noise (spurious) modes are always generated when extracting structural (physical) 
modes. These computational modes are even necessary to accommodate unwanted effects, such as 
measurement noise, leakage, residuals, non-linearity and un-modeled characteristics, etc. The 
computational modes fulfill an important role in that they permit more accurate modal estimation 
by supplying statistical DOF to absorb these effects. In the traditional modal identification for 
EMA, IRF can be obtained via inverse FFT of FRF, and might need less computational modes. For 
operational modal identification, which makes use of correlation function calculated from random 
response data, the problems with model order determination and structural modes distinguishing 
become much more significant. For differentiation between real and spurious modes, many modal 
validation techniques have been developed. An array of modal indicators was developed for the 
purpose. Graphical approach making use of stability diagram is more widely adopted measure. 
However, there is, up to now, no guarantee to distinguish structural modes from spurious ones 
when deal with complex structure with noisy measurements. 

On the other hand, classical frequency domain (FD) techniques, such as PSD peak picking, have 
been applied for OMA. The PP technique gives reasonable modal estimates if the modes are well 
separated [10].The main advantages compared to the TD techniques are that it has no bother of 
computational modes and is much faster and simpler to use. However, PSD peak picking technique 
is normally inaccurate. The accuracy of modal frequency estimation is limited to the frequency 
resolution of the PSD spectrum, operational deflection shapes is obtained instead of real mode 
shapes, damping ration estimation via half-power point is biased or even impossible. Moreover, PP 
technique is very difficult, if not impossible in dealing with closely spaced modes, which is often 
encountered for the OMA with real world complex structures. 

A challenge was raised if we could develop a FD technique that has all the advantages but doesn’t 
have the disadvantages of the PSD peak picking technique. A new FD operational modal 
identification technique, named as Frequency Domain Decomposition (FDD) was then developed 



in 2000 to answer the challenge [11]. The first generation of FDD technique was proposed for 
estimation of modal frequencies and mode shapes. Enhance FDD is then developed to extend to 
damping ratio extraction [12]. Recently, a frequency-spatial domain decomposition (FSDD) has 
been proposed to further improve the FDD performance.  

Theoretical background for FSDD techniques is described in this paper, followed by applications of 
the FSDD for OMA of civil engineering structures. Three typical applications, i.e. a. large-span 
stadium roof for verifying finite-element model, a highway bridge for damage detection and a 
long-span cable-stayed bridge for structural health monitoring, are presented. 

2. Frequency Domain Decomposition Technique 
2.1 OMA in Frequency Domain, PSD-based Procedures (I) 

Frequency domain decomposition technique is based on the formula of input and output PSD 
relationship for stochastic process. 

T
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Where Gxx(jω), Gyy(jω) are input and output PSD matrix, respectively, H(jω) is the FRF matrix, 
which can be expressed as partial fractions form via poles λr and residues Rr,  
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Where T
rrr γR φ= , rr γ,φ  are mode shape and modal participation vector, respectively. When all 

output measurements are taken as reference, then H(jω) are square matrix and rrγ φ= . 

Assuming input is white noise process, i.e. Gxx(jω) equals to constant, the modal decomposition of 
the output PSD matrix Gyy(jω) can be derived as 
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Where rth pole drrr jωσλ +−= , corresponding rth residue T
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scalar in the case of white noise excitation. In the vicinity of a modal frequency the PSD can be 
approximated as  
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Classical Frequency Domain (FD) approach is Peak Picking technique (PP). PP is based on the fact 
that modal frequencies directly from the Power Spectral Density (PSD) plot at the peak, and mode 
shapes can be obtained as a column of the PSD matrix at the corresponding damped natural 
frequency. 

The key of the FDD technique is to conduct singular value decomposition (SVD) of output PSD, 
estimated at discrete frequencies ω=ωi,  
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Where Si is a diagonal matrix, consisting of scalar singular values sij [ ]imiii uuuU ,,, 21 K= , 
[ ]imiii vvvV ,,, 21 K=  are corresponding right and left unitary matrices, consisting of the singular 

vectors uij,vij, respectively. When all output measurements are taken as references, then Ui=Vi. It is 
observed that singular values are the function of the frequency. When the frequency approaches to 
a modal frequency ωr, the PSD matrix approximates to a rank one matrix as 
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The first singular value (SV) reaches maximum. The corresponding singular vector ur1 is an 
estimate of the rth mode shape 1

ˆ
rr u=φ  with unitary normalization. In the repeated mode case, the 

rank of PSD matrix will be equal to the number of multiplicity of the modes. Therefore, the SV 
function can suitably be adopted as modal indication function (MIF). Modal frequencies can be 
located by the peaks of the SV plots. From the corresponding singular vectors, mode shapes can be 
obtained. Since SVD has the ability of separating signal space from noise space, the modes can be 
indicated from SV plots with noisy measurements, and closely spaced modes or even repeated 
modes can easily be detected.  

The first generation of FDD can only estimate modal frequencies and mode shapes. The second 
generation of FDD, which is called as Enhanced FDD or EFDD has been followed for estimation 
of not only modal frequencies and mode shapes, but damping ratios [12].To do so, the singular 
value data near the peak with corresponding singular vector having enough high MAC value are 
transferred back to time domain via inverse FFT, which is approximation of correlation function of 
the SDOF system. From this free decay function of the S-DOF system, the modal frequency and 
the damping ratio are then calculated by the logarithmic decrement (Logdec) technique.  

Since only truncated data, i.e. the data near the peak of the SV plot are used for the inverse FTT to 
calculate approximate correlation function of the corresponding S-DOF system. It may cause bias 
error in damping estimation. Moreover, when dealing with closely spaced modes, beat phenomena 
would be encountered, which can leads inaccurate estimation of damping ratio by Logdec 
technique.  

The third generation of FDD, i.e. Frequency-Spatial Domain Decomposition (FSDD), has been 
developed recently to eliminate these shortcomings. FSDD makes use of the property of unitary 
singular matrix to derive an enhanced output PSD via pre and post-multiplying a singular vector 
corresponding to the rth damped natural frequency, 
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It is seen that the output PSD is enhanced in the vicinity of the rth modal frequency and behaves 
like an S-DOF system, and beyond this region it is attenuated. In other words, the singular vector 
corresponding to a modal frequency acts as a modal filter. In most cases the enhanced PSD can be 
approximated as S-DOF system, and therefore an S-DOF curve fitter making use of the spectral 
lines in the vicinity of a mode can be adopted to estimate relevant modal frequency and damping 
ratio. 

3. Application of FSDD to OMA of civil Engineering Structures 
3.1 Application to a Large-span Roof Structure 



An ambient modal testing was conducted with respect to the roof of the Tokyo Horse Raising 
Stadium (HRS) right after finishing remodeling of the 1/3 of the stadium. The roof measures 
108×49 meters (Figure 1). 66 accelerometers were rather uniformly placed in the square-shaped 
roof with 4 setups to measure vertical vibration. Three of them were used as references. Although 
there are many modes in the frequency range of interest, high quality MIF was obtained to show 
clearly all the structural modes, see Figure 2. 16 modes are then identified within 5.6 Hz. Figure 3 
shows relevant mode shapes. 

   
Figure (1a) The Tokyo Horse Raising Stadium (1/3 part)  Figure (1b)  The roof of the Stadium 

 
 
 
 
 
 
 
 
 
 

Figure 2 Modal Indication Function of the HRS roof 

 
 
 
 
 
 
 

Figure 2.  

 
 
 
 
 
 

Figure 3 FSDD-Identified mode shapes of the HRS roof 



3.2 Application to a Highway Bridge  

Ambient response measurements of a well known Z24 bridge are applied as a case study for FSDD 
operational modal identification. Z24 ridge is an old Swiss bridge over passing the national 
highway between Bern and Zurich. It is a traditional pre-stressed concrete box girder bridge with 
main span of 30 m and two side spans of 14 m, and supported by 4 piers clamped into the girders 
(Figure 4). (1)).  

 
          Figure 4  Z-24 Bridge     Figure 5  MIF of the Z-24 Bridge 
OMA was conducted utilizing response measurements subject to traffic excitation. The data was 
obtained from 9 accelerometer setups, 8 sets with 33 channels and one with 27 channels. Three 
reference sensors were adopted including one unidirectional and one 3D sensor. 

From singular value plot, which acts as modal indication function (MIF) shown in Figure 5, it can 
be clearly seen that 6 modes in the frequency range of interest are well separated from noisy 
measurements. Enhanced PSD is then computed making use of 6 singular vectors corresponding to 
the 6 peak spectral lines as modal filters (Figure 6). Figure 7 gives identified 6 mode shapes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Enhanced PSD and curve fitting of the Z-24 bridge 

 

Zurich

Bern

North

South

8.60  

To ZurichTo Bern

Utzenstorf Koppigen

2.70  14.00  14.00  2.70  30.00  

1.10  

4.50  

Highway A1

O
be

rh
ol

zb
ac

h



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7  FSDD-Identified mode shapes of the Z-24 bridge 

3.3. Application to A long-span Cable-stay Bridge 

The Ting Kau bridge is a cable-stayed bridge with two main spans of 475 and 485 m, respectively, 
located in Hong Kong (Figure 8). More than 200 sensors, including 30 accelerometers, are 
permanently installed inside the bridge for structural health monitoring. .24 accelerometers are 
placed in 8 sections of the bridge, two vertical and one transversal direction at each section. Four 
accelerometers set on the center tower with three in transversal and one in vertical direction. Two 
accelerometers with one each in transversal are placed at the two site towers. One monitoring data 
for each channel sampled at rate of 25.6 Hz was utilized for OMA via FSDD. Decimation of 6 
leads to maximum frequency of 1.67 Hz. 

It is hardly to tell how many modes exist in the frequency range from PSD plots, see Figure 9. 
However, MIF based on SVD of response PSD matrix can still indicate clearly the structural modes. 
Favorable enhanced PSD can also be obtained for almost all the modes. Due to the limitation of the 
size of the paper, only a few enhanced PSD plots are shown in Figure 10.All together 54 modes are 
successfully identified from these monitoring data of the bridge under operational condition. 
 
 
 
 
 
 
    Figure 8  Schematic plot of the Ting Kau bridge      Figure 9  PSD obtained from monitored response  
 



 
Figure 11 Enhanced PSD and curve fitting of the Ting Kau bridge 

4. Conclusion 
The development and theoretical background of the new operational modal identification technique 
FSDD is described in this paper. Three applications to the civil engineering structures for typical 
purposes are presented, i.e. a. large-span stadium roof for verifying finite-element model, a 
highway bridge for damage detection and a long-span cable-stayed bridge for structural health 

Figure 10 MIF of the cable-stayed Ting Kau bridge 



monitoring. Favorable results have been obtained via new developed operational modal 
identification technique frequency-spatial domain decomposition (FSDD). It is shown that 
structural modes can clearly seen by the modal indication functions obtained from singular value 
plot computed from output PSD measurements. FSDD is actually narrow band FD identification 
approach with S-DOF curve fitting with the capability of dealing with very closely spaced or even 
repeated modes. An enhanced FSDD is underway, which makes use of two singular vector to 
compute enhanced PSD, and therefore, the accuracy of curve fitting with two closely spaced modes 
can be further improved via two-DOF curve fitter.  
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