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Abstract 
Operational Modal Analysis, also known as Output Only Modal Analysis, has for several years 
been used for extracting modal parameters of mechanical structures. In this paper, an overview of 
the Frequency Domain Decomposition (FDD) technique and the Stochastic Subspace Identification 
(SSI) technique is given. Use of the recently developed projection channel technique in 
combination with the SSI technique is described and discussed. 

Practical experiences in the use of these techniques are illustrated from measurement examples by 
comparing the results from the different techniques. 

1  Introduction 
Operational Modal Analysis is a technique for extraction of the modal parameters from vibration 
response signals. A main difference compared to the traditional mobility based modal analysis 
technique is that measurement of the input forces is not required. This enables testing of structures 
under operating conditions or in other situations were the input forces are impossible to measure. It 
is therefore also called Ambient Modal or Output only Modal. The technique has been known for a 
long time and the method has been used for civil engineering for more than a decade and in recent 
years within rotating machinery, automotive and aerospace applications. 

Performing modal test under operating (ambient or natural) conditions means that the structure is 
subjected to realistic vibration behaviour, which might be difficult to obtain by use of artificial 
excitation. It also means that the test can be performed simultaneously with other response tests and 
it provides the possibility for extraction of modal information under conditions where a traditional 
mobility based modal test is very difficult or impossible to perform. 

The measured responses are governed by the dynamic characteristics of the system and the forces, 
which excite the system. The derived model thus contains information of both the system 
characteristics as well as the excitation signals. This is one of the challenges in Operation Modal 
Analysis and some understanding of the nature and the characteristics of the excitation forces are 
therefore very important in order to interpret and understand the results and be able to derive a 
proper modal model. 



This paper gives an overview of the practical use of the most commonly used operational modal 
analysis techniques, the Frequency Domain Decomposition (FDD) technique and the Stochastic 
Subspace Identification (SSI) techniques and application of the recently developed projection 
channel technique is covered as well. 

Most of the practical aspects, comments and experiences are illustrated via the analysis of three 
different test objects: 

a) A 1:5 scale model of a wind turbine wing (Fig.1a).  It is a detailed model of one of the blades 
from a 675 kW wind turbine. The wing was made for lab investigations of static as well as dynamic 
parameters. Fig.1a shows a picture of the setup used for the measurements. The wing itself is 
supported by a console which is regarded as stiff compared to the wing itself. 24 accelerometers are 
mounted in two rows along the wing. Two time recordings were taken, one with the accelerometers 
perpendicular to the surface (Z-direction) and one pointing in the direction of rotation (X-
direction). The X- and Z-directions of an additional point near one of the corners are used as 
reference DOF’s (a DOF means a point and an associated direction) and the model is determined 
by combining (linking) the results from the two recordings together. The wing is considered as stiff 
in the length direction and vibrations in this direction are disregarded. The wing is exposed to an 
acoustic load by means of a loudspeaker placed beneath the wing. A microphone placed in front of 
the wing was used to measure the sound level spectrum in order to validate presence of energy in 
the frequency range of interest. See Refs. [1], [2] and [8] for more information on the setup, 
measurements and analysis results. 

 b) Outer part of an airplane wing (Fig.1b). Fig.1b shows a picture of the setup used for the 
measurements. The outer part of the wing is mounted on a support structure. 36 accelerometers are 
mounted on the surface giving measurements on 36 points perpendicular to the surface (Z-
direction) in one measurement (one data set). Different experiments were performed using moving 
random impact excitation and acoustic excitation. 

c) Plate with heavily coupled modes (almost repeated roots) (Fig.1c). Fig.1c shows a setup for 
measurements on a plate, featuring heavy coupling between the first two modes, the first bending 
mode and the first torsion mode (almost repeated roots). In one set of tests 12 accelerometers are 
used to measure 12 points perpendicular to the surface (Z-direction) in one measurement (one data 
set) and in another set of tests 5 accelerometers are used for measuring the 12 points in 4 
measurements (4 data sets) by roving 3 accelerometers and having two accelerometers fixed 
reference DOF’s. Different excitation methods are used, including single (fixed) broadband, dual 
(fixed) broadband and dual moving random impact excitation. A motor with rotating shaft is used 
as well in some of the tests. 

 
  

Fig.1a Model of wind turbine wing 
analyzed using acoustical excitation 

Fig.1b Outer part of an 
airplane wing 

Fig.1c Plate with heavily 
coupled modes 

Traditional mobility based modal analysis is performed on the structures as well for comparison of 
the measurement results. 



2 Data acquisition and validation equipment 
For acquisition and validation of the response data a Brüel & Kjær PULSE multianalyser system is 
used together with Brüel & Kjær modal accelerometers. For some of the tests the handheld exciter 
Brüel & Kjær Type 5961 is used. PULSE multianalyser performs analysis and validation of the 
acquired time data in terms of contour plots of Short Time Fourier Transforms. This reveals the 
spectral distribution of the response signals as a function of time and content of sinusoidal 
frequency components can be detected. The frequencies of the main participating modes can often 
be identified from these contour plots. Fig.2 shows an example of a contour plot of a STFT of one 
of the response signals from a test of the plate. Apart from the broadband random content a number 
of sinusoidal components are clearly seen as well. These components are due to excitation forces 
from a motor running at almost constant speed. The speed was approximately 5850RPM, 
corresponding to a fundamental frequency of approximately 97,5Hz. The first harmonic as well as 
the third and fourth harmonic is present. The responses thus contain stationary operating deflection 
shapes at these frequencies (spectral ODS), which is very important information for the subsequent 
operational modal analysis. 

The geometry and the time data are subsequently transferred into the Brüel & Kjær Operational 
Modal Analysis software for further signal processing and modal parameter extraction. 

3 Modal parameter extraction methods 

3.1 Signal Processing 

In order to optimize the subsequent modal parameter extraction, by use of the time domain 
techniques, digital processing in terms of low-pass, high-pass, band-pass, band-rejection filtering 
and further decimation of the data can be performed. Possible requirement of filtering of the data 
depends upon the spectral distribution of the response signals. The first step of the analysis is 
therefore to calculate the Power Spectral Densities of the response signals and validate these 
together with the Short Time Fourier Transform (STFT) analysis performed earlier in the data 
acquisition process as described above and exemplified in Fig.2.  

If for example the response signals have high content at low frequencies, due to high excitation of 
rigid body modes or measurement noise, a high-pass filtering of the signals can make the 
identification of the lower elastic modes, using the SSI technique, much easier. The filtering 
should, however, be made as “gentle” as possible, meaning that the order of the filter (giving the 
slope of the filter characteristic) should be as low as possible. 

3.2 Frequency Domain Decomposition theory background 

The Frequency Domain Decomposition (FDD) is an extension of the Basic Frequency Domain 
(BFD) technique, or more often called the Peak-Picking technique. This approach uses the fact that 
modes can be estimated from the spectral densities calculated in the condition of a white noise 
input and a lightly damped structure (Refs. [3], [4] and [8]). The FDD technique estimates the 
modes using a Singular Value Decomposition (SVD) of each of the Spectral Density matrices. This 
decomposition corresponds to a Single Degree of Freedom (SDOF) identification of the system for 
each singular value. In the following the most important relationships for understanding the FDD 
technique are given. 

The relationship between the input x(t), and the output y(t) of a linear system can be written in the 
following form (Refs. [5] and [6]) 
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where [Gxx(ω)] is the input spectral matrix, [Gyy(ω)] is the output spectrum matrix, and [H(ω)] is 
the Frequency Response Function (FRF) matrix. 

Writing the FRF matrix in the typical partial fraction form (used in classical Modal analysis), in 
terms of poles, λ and residues, R, and assuming that the input is random in both time and space, has 
a zero mean white noise distribution (i.e. Gxx(ω) = Const. for all the inputs) and that the damping is 
light, the response spectrum matrix can be written as the following final form (see Ref. [3]): 
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where k∈Sub(ω) is the set of modes that contribute at the particular frequency, ψk is the mode 
shape vector and dk is a scaling factor for the kth mode. λk = - σk + j ωdk is the pole of the kth mode, 
where σk is the modal damping (decay constant) and ωdk the damped natural frequency of the kth 
mode. Eq. (2) expresses the response spectral matrix in terms of the modal parameters, λk and ψk 
and the scaling factor dk , which is governed by the excitation. 

Another way to understand the response signals is from their decomposition into participations 
from the different modes [Φ] expressed via the modal coordinates q(t): 

(3) 
y(t) = [Φ]q(t) 

Using eq. (3) in the expression of the correlation matrix of the responses we get: 

(4) [Cyy(τ)] = E{y(t+τ)y(t)T} =  E{[Φ]q(t+τ)q(t)H[Φ]H} = [Φ][Cqq (τ)] [Φ]H 

Applying the Fourier transform in eq. 4 gives: 

(5) [G yy(ω)]  = [Φ][Gqq(ω)] [Φ]H 

where [Gqq(ω)] is the spectrum matrix of the modal coordinates. 

The FDD technique is based upon the SVD of the Hermetian response spectrum matrix at each 
frequency and for each measurement (data set): 
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where [S] is the singular value diagonal matrix and [V] is the orthogonal matrix of the singular 
vectors. The singular vectors (the columns in [V]) are orthogonal to each.  

Eq. (6) has the same form as eq. (5) and it can be understood that the singular vectors present 
estimations of the mode shapes and the corresponding singular values present the response of each 
of the modes (SDOF systems) expressed by the spectrum of each modal coordinate The 
assumptions are that [Gqq(ω)] is a diagonal matrix, i.e. the modal coordinates are uncorrelated, and 
that the mode shapes (the columns in [Φ]) are orthogonal. 

Uncorrelated modal coordinates can be obtained by having uncorrelated random excitation forces 
with a random distributed over the structure (i.e. an excitation which is random in time and space). 

A mode shapes should be estimated as close as possible to the corresponding resonance peak, 
where the influence of the other modes is as small as possible and the singular vector is most likely 



to give the best estimate of mode shape. In case of closely coupled modes, where the response is 
given by more singular values (response from more modes), the measurement DOF´s should be 
distributed over the structure such that the mode shapes are orthogonal and therefore likely to be 
estimated by the orthogonal singular vectors. 

The simple peak picking technique gives frequency and associated mode shape at the selected 
frequency. The peaks in the SVD plot should be used as explained above. 

In the later developed so-called Enhanced Frequency Domain Decomposition (EFDD) a SDOF 
model is imposed on the singular values in a user-defined frequency band around the peak 
providing the estimate of frequency and damping. An average of the corresponding singular 
vectors, weighted by the singular values in the band, provides the estimate of the mode shape. See 
Ref. [8] for a detailed description of the EFDD methods. 

3.3 Stochastic Subspace Identification (SSI) theory background 

The Stochastic Subspace Identification (SSI) techniques fit parametric models directly to the 
measured time responses. They are based upon the stochastic state space model described by: 

xt+1 = [A]xt + wt 
(7) 

yt   = [C]xt + vt 

where xt is the state vector at time t, [A] is the system matrix (state matrix), yt is the response 
vector at time t, and [C] is the observation matrix. The response is generated by two stochastic 
processes wt and vt called the process noise and the measurement noise respectively. 

The steps in the SSI techniques from the time responses yt, via optimal predictors of xt, least square 
error estimates of [A] and [C] etc., to the estimated modal parameters are described in several 
references, including Refs. [6], [9], [10] and [11]. 

Modal models are estimated for the different state space dimensions up to a selected maximum 
state space dimension. The setting of maximum state space dimension depends upon the number of 
modes, which is searched for, the excitation, the number of sinusoidal components in the response 
signals and the number of noise modes needed to fit (predict) the measured response signals. 

The results are achieved by a singular value decomposition of the full observation matrix, which is 
a matrix calculated from the measured responses, and extracting a subspace holding the modes in 
the model. Three different algorithms are often used in the SSI techniques, the Unweighted 
Principal Component (UPC), the Principal Component (PC) and the Canonical Variate Analysis 
(CVA) algorithms. 

A stabilization diagram for the modal models is used for selecting a model (at a certain state space 
dimension). Responses predicted from the models are compared with the measured responses in 
order to validate the selected model. The normalized singular values of the weighted observation 
matrix (or weighted common SSI input matrix) indicate the rank of the matrix on a scale from 0 to 
1 and this value can therefore also be used as a guideline for the state space dimension required for 
the modelling. Is it difficult, however, to say how low this number should be and it is different for 
the three algorithms. 

If the responses are measured in a sequence of measurements (data sets), a number of reference 
Degrees of Freedom (DOF’s) must be included in each measurement (data set) and the models 
from each measurement are linked together afterwards. 



Channel projection 

In the case where a large number of response DOF’s are measured simultaneously (i.e. 
measurement setups with large channel counts) the parametric model fit suffers from the estimation 
of many noise modes, compared to the number of physical modes of the system. The main reason 
for this is that the many channels contain the same physical information but different random 
errors. A way to reduce the amount of noise modes is therefore to reduce the number of channels in 
the actual estimation process. The information of the physical modes must not be affected and the 
selected channels must represent the system. 

A simple measure of the amount of information of a measurement channel compared to the other 
channels can be established from calculation of the correlation coefficients between the different 
measurement channels 

The first step is to find the channel that correlates most with all the other channels. This channel 
most likely contains maximum physical information 

The second step is to find the remaining number of requested projection channels. These are found 
by similar search of the correlation coefficient matrix, as channels that correlate the least with all 
previously found projection channels. These channels will most likely bring maximum of new 
information. The only pitfall here is if a channel is dead and only contains noise. In such a case it 
will have an insignificant correlation with the other channels. To prevent this lower threshold of 
allowed correlation should be applied. 

In case of multiple data sets the first step above is excluded. Instead the user-defined reference 
channels are applied as initial projection channels. The assumption is that all the modes are 
sufficiently present in the reference DOF´s. The remaining step is as described above. 

Use of projection channels decreases the amount of redundant information and the estimated 
models tends to stabilize faster, i.e. at lower state space dimensions (corresponding to “smaller” 
subspaces). In addition, computation time is decreased since the matrix operations are simplified 
significantly when having many measurement channels.  

Choice of number of projection channels will be discussed below in the examples. 

4 Overview of analysis results and experiences 

4.1 Frequency Domain Decomposition (FDD) method 

The FFD technique is the most simple and straightforward method to use. After validation of the 
STFT and the averaged spectra of the response signals, the modes are selected from the plot of the 
SVD of the response spectral density matrix. If there is more than one measurement (more than one 
data set) it is the average of the Singular Values of the spectral densities of each of the 
measurements, which is used for the selection of the peaks. 

Fig.3a shows the average of the SVD (FDD) of the two measurements of the responses from the 
wind turbine wing model (Fig.1a) in a test using acoustical excitation (low frequency random). 

A number of peaks appear very clearly in the SVD, specially in the low frequency range below 
100Hz. These peaks are expected to be caused by structural resonances and not by response due to 
a high level force excitation in a narrow-band. 17 modes are detected below 110Hz (Fig.3a). The 
frequency and damping values are determined using a SDOF model applied in a user-definable 
frequency band around the peak and the mode shapes are determined from the singular vectors 
weighted by the singular values in the frequency band. All the resonances are well separated in the 



plot even the two lowest modes at 7,8Hz and 8,6Hz due to the relative low damping (approximately 
1,4%). 

 

 

  
Fig.3a SVD plot from the test of the wind 

turbine wing model 
Fig.3b SVD plot from a test of the outer part of an 

airplane wing 

A SVD plot from a test of the outer part of an airplane wing using moving random impact is shown 
in Fig.3b. Another example where a number of separated peaks, caused by structural resonances, 
are clearly seen allowing for modal model estimations using the EFDD technique. 

The underlying assumption for the operational modal identification techniques is that the excitation 
is from broadband random forces distributed over the structure (random in time and space). The 
SVD plot is very useful to validate whether this is the case or not. The use of the FDD technique 
and the interpretation of the SVD plot are illustrated in the following via some simple tests using 
different excitations of the system. 

Figs.4a, 4b, 4c and 4d shows the SVD plots from four different tests of the plate (Fig.1c) featuring 
heavy coupling between the first bending and the first torsion modes at 187Hz and 189Hz. The 
damping ratio of the modes is approximately 3,5%, which means that the 3dB bandwidth for each 
mode would be approximately 13Hz if it was isolated from the other mode as a SDOF system. 
Heavily coupling, or almost repeated roots, means that the 3dB bandwidth of the individual 
resonances is much larger than the difference between the resonance frequencies. These examples 
illustrate the importance of proper excitation of the system in order to be able to estimate the 
model. In Fig.4a a single broadband source is exciting the plate in a corner point and it is seen that 
the SVD plot is dominated by only the first singular value. The first singular value (green curve) is 
much higher than the second singular value (red curve) and the estimates of the two closely spaced 
modes at around 188Hz from the first and the second singular value (green and red curve, 
respectively) is very poor. Both frequency and damping values are biased and the mode shapes 
appear complex and as linear combinations of the two shapes. 

In Fig.4b two broadband sources excite the plate in two corner points, from which the two modes 
are different (mode shapes at the two points are in-phase for bending and out-of-phase for torsion). 
The SVD plot is in this case dominated by the first two singular values corresponding to the two 
independent sources and the modal parameters for the two coupled modes can be estimated 
correctly, see Fig.5a and 5b, with results that are in agreement with the results from classical 
mobility based poly-reference technique. Notice that the bending mode (186,6Hz with 3,4% 
damping) is determined from the SDOF resonance curve in the second singular value and the 
torsion mode (188,9Hz with 3,7% damping) from the SDOF resonance curve in the first singular 
value. 



In order to illustrate the importance of proper distributed excitation Fig.4c shows the SVD plot in 
the case of two broadband sources exciting the plate as in Fig.4b, however in two corner points 
diagonal to each other, from which the two modes look the same (mode shape of the two points are 
in-phase for bending as well as for torsion). In this case the second of the two modes can only be 
seen in the third singular value with biased estimates of both frequency and damping and very poor 
estimate of the mode shape as in the case of only one excitation source (Fig.4a). This corresponds 
to the situation of separating closely spaced modes using classical mobility based poly-reference 
technique. Separation of the two modes requires that the mode shapes are different (orthogonal) at 
the reference DOF’s. 

In Fig.4d the plate is excited by two broadband sources moving around on the surface and the SVD 
plot shows much higher levels in the lower singular values. Notice a much clearer appearance of 
the two modes at 495Hz and 520Hz in the first singular value and their modal parameters can be 
extracted in better agreement with the results from classical mobility based measurements. 

Content of sinusoidal components can be identified from contour plots of the STFT as illustrated in 
Fig.2. Fig.6 shows a response autospectrum (top) and a SVD plot (bottom) from a similar test with 
an excitation signal having broadband random content together with a number of sinusoidal 
components (harmonics) from a motor running at constant speed. With the selected frequency 
resolution (1Hz spacing between the FFT lines) the harmonic components above 300Hz are buried 
in the power spectral density of the random signal and can therefore not be seen in the 
autospectrum. In the SVD plot, however, the harmonic components appear very clearly in the lower 
singular values. The spectral components influencing the highest singular values can influence the 
modal parameter extraction from the broadband random response. The operating deflection shapes 
at the discrete frequencies (spectral ODS) must be known in order to be able to distinguish between 
these and modes in the validation of the extracted modal models. A harmonic component is seen at 
195Hz, i.e. very close to the frequencies of the bending and torsion modes and this obstructs the 
identification of these modes. This sinusoidal component is within the 3dB bandwidth of the modes 
and proper identification of the modes is very difficult even after careful (“gentle”) band-rejection 
filtering of the component. 

The SVD plot might also reveal poor signal quality if not already revealed in the validation (STFT) 
or the signal processing (power spectral densities) as discussed above. Poor signal quality could be 
due to improper signal conditioning or a damaged transducer or cable. Fig.7 shows the SVD plot of 
a measurement similar to the one in Fig.4d, however with one of the transducers disconnected, 
causing the low level (noise) singular value. 

The SVD plots should therefore always be investigated no matter which method is used for the 
modal parameter extraction. 

4.2 Stochastic Subspace Identification (SSI) method 

In Refs. [1], [2], [8] and [9] analysis of the wind turbine wing model by use of EFDD and SSI 
techniques as well as classical mobility based method is discussed. The three SSI methods and 
EFDD gave similar results, with respect to frequencies and mode shapes. In the Refs. [1] and [2] 
the modes below 40Hz were obtained using the SSI techniques after low-pass filtering and 
decimation to 50Hz. These analyses were performed before the use of projection channels was 
developed. The two measurements (two data sets) contain 26 DOF’s each, including the two 
reference DOF’s, and use of projection channels is an obvious choice. The SVD plot in Fig.3a 
shows that the information in the response signals is carried in the first three to four singular values 
indicating that an optimum number of projection channels should be between three and five. 



 

  
Fig.2 Example of a contour plot of a STFT of a 
response signal revealing random as well as 
sinusoidal content 

Figs.4d SVD with two moving broadbanded 
excitation sources 

  
Figs.4a SVD with one fixed broadbanded 

excitation source 
Figs.5a Bending mode estimated from the FDD 

(SVD) shown in Fig 4b 

  
Figs.4b SVD with two fixed broadband 

excitation sources 
Figs.5b Torsion mode estimated from the FDD 

(SVD) shown in Fig 4b 

 

 
Figs.4c SVD with two fixed broadband 

excitation sources (different points than in 4b) 
Fig.6 Autospectrum and SVD plot from a test 

similar to the one shown in Fig.2 

 



 

 
Figs.7 SVD with one transducer 
disconnected, otherwise as in Fig.4d  

Fig.9a Stabilization diagrams without projection 
channels 

 
 

Fig.8a No projection channels  Fig.9b Stabilization diagrams with five projection 
channels 

  
Fig.8b Three projection channels Figs.10a Stabilization diagram with two fixed 

broadbanded excitation sources 

  
Fig.8c Decimation to 50Hz and three 
projection channels 

Figs.10b Stabilization diagram with two moving 
broadbanded excitation sources 

 



 

Figs.8a, 8b and 8c shows the stabilization diagrams for the PC algorithm in the frequency band up 
to 50Hz for different analyses of the second data set. In Fig.8a the analysis is performed without 
projection channels, with a frequency range of 200Hz and a maximum state space dimension of 
200. The stabilization diagram is shown up to state space dimension 150 and none of the modes 
below 40Hz have been identified. In Figs.8b three projection channels are used with everything 
else unchanged compared to the analysis in Fig.8a. With three projection channels most of the 
lower modes are identified at a state space dimension of app. 80. The second mode at 8,5Hz, 
however, is not identified in this range of state space dimension. Analysis using four or five 
projection channels gives less stabilization of the modes indicating an optimal choice of three 
projection channels. In Figs.8c the time data has been low-pass filtered and decimated to 50Hz and 
three projection channels are used with a maximum state space dimension of 80. All modes below 
50Hz are identified from a state space dimension of app. 30 and the variation of the estimated 
modal parameters between the two measurements is much smaller compared to the results from the 
analysis without decimation in Fig.8b. Using low-pass filtering and decimation to 50Hz, without 
projection channels, identification of the modes below 40Hz requires much higher state space 
dimensions with less stabilization and much more noise modes in the identification. The same 
tendency is seen for the UPC and the CVA algorithms. This illustrates the advantage of combining 
the use of projection channels with low-pass filtering and decimation in situations of higher number 
of channels and modal identifications over several octaves: The lower frequency modes can be 
identified with better stability and at lower state space dimensions with fewer noise modes. 

The responses from the 36 points of the outer part of the airplane wing were measured 
simultaneously in one measurement (one data set). The SVD plot in Fig.3b shows that all the 
information in the 36 signals is carried by the first four to five singular values. Analysis was 
performed for all the three algorithms (UPC, PC and CVA) without projection channels and by use 
of three, five and eight projection channels. The stabilization diagrams for the PC algorithm, up to a 
state space dimension of 80, are shown without use of projection channels in Fig.9a and with use of 
five projection channels in Fig.9b. The analyses have a maximum state space dimension of 120 and 
a frequency range of 200Hz. Without projection channels there is very poor stabilization for the 
modes below 80Hz. Use of projection channels improves the identification and stabilization of the 
modes down to app. 20Hz. Five projection channels gives the best stabilization, better than three 
projection channels and slightly better than eight projection channels. This is in good agreement 
with the number of significant singular values (Fig.3b). All three SSI algorithms give almost 
identical results and they agree very well with those found by the EFDD method (Fig.3b) up to 
150Hz.  

The ability of the SSI technique to estimate closely coupled modes (almost repeated roots) is 
illustrated with the tests on the plate (Fig.1c). A number of different tests are performed as 
discussed in section 4.1. The importance of having proper excitation of the system is illustrated in 
Figs.10a and 10b. In Fig.10a two fixed broadband excitation sources are used (same test as in 
Fig.4b) and in Fig.10b two moving broadband excitation sources are exciting the system (same test 
as in Fig.4d). They show the stabilization diagram for the PC algorithm up to a state space 
dimension of 80. The maximum state space dimension is set to 120 and projection channels are not 
used. All the modes can be identified in both cases, including the closely coupled bending and 
torsion modes at app. 188Hz (see Figs.5a and 5b), but the stabilization is much faster and better in 
the case of two moving excitation sources and the mode shapes for the bending and the torsion 
modes are also better estimated in the case of moving excitation sources (more real and less 
coupled). The modal parameters for the third and the higher elastic modes are almost identical for 
the two cases, but much higher state space dimension (more than twice) is required in the case of 



the fixed excitation sources. This is also indicated in the normalized singular values of the weighted 
observation matrix shown to the right in Figs.10a and 10b, next to the stabilization diagrams (notice 
that the normalized singular values are shown up to the maximum state space dimension of 120). 
The state space dimensions selected in this analysis using the PC algorithm are 67 and 25 for the 
two fixed excitation sources and the moving excitation sources, respectively. 

The UPC and CVA algorithms gave results almost identical to those given by the PC algorithm. 
The selected state space dimension follows the general trend, namely slightly higher for the UPC 
and somewhat higher for the CVA. 

In the tests where the 12 DOF´s are measured simultaneously it is worth to investigate the use of 
projection channels. In the case of two fixed excitation sources, most of the information is carried 
in the three or four highest singular values (see Figs.4b and 4c). Five projection channels gives 
slightly faster stabilization with the same results except for the mode shapes of the closely coupled 
modes being slightly more complex. Three projection channels gives almost same stabilization as 
without projection channels, except for the mode at 411Hz which stabilizes slower. When this 
happens it is often because the (automatic) choice of projection channels is not optimal for that 
mode and this situation can be verified by investigating the SVD plot. In this case the mode at 
411Hz appears in the second singular value when three projection channels is used and the 
stabilization in the SSI is slower. The conclusion is therefore that there is no need for use of 
projection channels in this case with only 12 measurement channels. 

The SSI method for the tests on the plate gives mode shapes, for the third and the higher modes 
(411Hz and higher), which are more real (normal) that those given by use of the EFDD method. 
The SSI and the EFDD methods give similar results for the closely coupled bending and torsion 
modes in the various excitation situations. 

5 Conclusion 
An overview of the identification techniques for operational modal analysis is given and some 
experience in their practical use is illustrated from the analysis of a number of tests on three 
different test objects. 

The Frequency Domain Decomposition (FDD) technique is the most simple and straightforward 
method to use when the SVD plot reveals isolated peaks caused by resonances. The simple peak 
picking technique gives frequency and mode shape at the selected frequency, whereas the 
Enhanced FDD (EFDD) method adds estimation of damping as well and the estimates of frequency 
and mode shape are improved by fitting a SDOF model to the singular values in a user-defined 
frequency band around the peak. 

In the case of heavily coupled modes (almost repeated roots) the modal information is incorporated 
in more singular values in the frequency band around the resonances. The example shows that 
proper estimation of the modes requires an excitation, which is sufficiently distributed over the 
structure. 

The SVD plot of the response signals is shown to be an excellent validation tool. It can reveal 
insufficient excitation of the system and poor quality of the signals and should therefore always be 
investigated no matter which method is used for the modal parameter extraction. 

The different SSI algorithms (UPC, PC and CVA) give almost identical results. The general trend 
is that the required state space dimension is lowest for the PC, slightly higher for the UPC and 
highest for the CVA, as also indicated by the normalized singular values of the weighted 
observation matrix and shown together with the stabilization diagram. 



In cases where a large number of response DOF’s are measured simultaneously (i.e. measurement 
with large channel counts) use of projection channels is essential and for modal identifications over 
several octaves use of projection channels together with low-pass filtering and decimation gives 
much better and faster stabilization. Use of projection channels also reduces the calculation time. 
Indication of the number of projection channels required is given in the number of significant 
singular values in the SVD plot. 
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