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Abstract 
An overview of the major development of operational modal identification is presented. It includes 
four time domain approaches, i.e. NExT-type, ARMAV model-based, stochastic realization-based, 
stochastic subspace-based methods, and two frequency domain approaches, i.e. FDD-type and 
output-only LSCF-type methods. The internal relation with traditional modal identification using 
input/output measurements for EMA, as well as with classical and modern system identification are 
revealed. The major issues in OMA are also summarized, which cover full or partial references, 
multiple sensor setups, nonstationary excitation, data-driven vs covariance-driven SSI, structural 
mode sorting, bias or unbiased modal parameter estimation, as well as mode shape scaling. 

1 Introduction 
Modal analysis has been widely applied in vibration trouble shooting, structural dynamics 
modification, analytical model updating, optimal dynamic design, vibration control, as well as 
vibration-based structural health monitoring in aerospace, mechanical and civil engineering. 

Traditional experimental modal analysis (EMA) makes use of input (excitation) and output 
(response) measurements to estimate modal parameters, consisting of modal frequencies, damping 
ratios, mode shapes and modal participation factors. EMA has obtained substantial progress in the 
last three decades. Numerous modal identification algorithms, from Single-Input/Single-Output 
(SISO), Single-Input/Multi-Output (SIMO) to Multi-Input/Multi-Output (MIMO) techniques in 
Time Domain (TD), Frequency Domain (FD) and Spatial Domain (SD), have been developed.  

However, traditional EMA has some limitations, such as:  
1). In traditional EMA, artificial excitation is normally conducted in order to measure Frequency 

Response Functions (FRFs), or Impulse Response Functions (IRFs). FRF or IRF would be 
very difficult or even impossible to be measured in the field test and/or for large structures;  

2). Traditional EMA is normally conducted in the lab environment. However, in many industrial 
applications, the real operation condition may differ significantly from those applied in the lab 
testing;  

3). Component, instead of complete system, is often tested in the lab environment, and boundary 
condition should be reasonably simulated. 

Since early 1990’s, operational modal analysis (OMA) has drawn great attention in civil 
engineering community with applications for off-shore platforms, buildings, towers, bridges, etc. 
OMA, also named as ambient, natural-excitation or output-only modal analysis, utilizes only 
response measurements of the structures in operational condition subjected to ambient or natural 
excitation to identify modal characteristics. OMA is also very attractive for aerospace and 
mechanical engineering due to many advantages, such as: (1) OMA is cheap and fast to conduct, no 
elaborate excitation equipment and boundary condition simulation are needed. Traditional modal 
testing is reduced to be response measurement; (2) Dynamic characteristics of the complete system, 



instead of component, at much more representative working points can be obtained; (3) The model 
characteristics under real loading will be linearized due to broad band random excitation; (4) All or 
part of measurement coordinates can be used as references. Therefore, the identification algorithm 
used for OMA must be MIMO-type. As a consequence, the closed-spaced or even repeated modes 
can easily be handled, and hence suitable for real world complex structures; (5) Operational modal 
identification with output-only measurements can be utilized not only for dynamic design, 
structural control, but vibration-based health monitoring and damage detection of the structures. 

In this paper, an overview of the development of operational modal identification is presented and 
major issues in OMA are discussed.  

1. Major Developments of OMA 
2.1 OMA in Time Domain, NExT-type procedures 

 In early 1990s, Natural Excitation Technique (NExT) was proposed for modal identification from 
output-only measurements in the case of natural excitation [1]. NExT actually is an idea or 
principle that suggests using correlation function (COR) of the random response of the structure 
subjected to natural excitation. NExT has shown that the COR can be expressed as a summation of 
decaying sinusoids. Each decaying sinusoid has a damped natural frequency, damping ratio and 
mode shape coefficient that is identical to the one of the corresponding structural mode. COR can 
therefore be employed as impulse response function (IRF) to estimate modal parameters. Hence, 
major multi-input/multi-output ((MIMO) TD modal identification procedures developed in 
traditional EMA can be adopted for OMA.  

There are three major TD MIMO algorithms have been widely utilized in EMA: 
 Polyreference Complex Exponential (PRCE), developed in 1982 [2] as an MIMO extension of 

the SIMO Least Squares Complex Exponential (LSCE) [3]; 
 Eigensystem Realization Algorithm (ERA), adopted from system realization theory in linear 

system analysis, and applied for modal identification in 1984 [4] 
 Extended Ibrahim TD (EITD), an MIMO version of ITD [5], implemented in 1985 [6] 

 To reduce the influence of noise contamination in the IRF data, an improved PRCE called 
Improved Polyreference technique (IPCE), which makes use of correlation of the TRF data, was 
developed in 1987[7]. Data correlation version of ERA, as ERA/DC [8], followed in 1988. 

Actually, Impulse Response Function (IRF), Free Decay Response (FDR), Correlation Function 
(COR) as well as Random Decrement signature (RDD) can all be expressed as modal superposition 
or modal decomposition, i.e. a summation of exponentially decayed sinusoids. A Time Response 
Function (TRF) is proposed to represent these TD signature or features [9]. The NExT-type of 
operational modal identification procedures can also be called as two-stage TD modal identification, 
as aforementioned traditional TD MIMO: estimation of the time response function (TRF) as the 
first stage, and extraction modal parameters from TRF data as the second stage. 

The time response function (TRF) can be estimated by the following techniques: 
 Inverse FFT of the FRF estimation to obtain IRF for time domain EMA; 
 Free decay response (FDR) can directly be measured either from transient excitation or 

sudden termination of board band random excitation; 
 Correlation function (COR) can either be estimated directly from stochastic response via 

correlogram, or from Power Spectrum Density (PSD) via inverse FFT via periogram; 
 Random decrement signature (RDD) was proposed as free decay response in the beginning 

[10], [11], and then proved to be correlation function (COR) of the response, and can be 
computed through many ways from random response data [12], [13]. 



It should be noted that the NExT-type modal identification procedures adopted from EMA are all 
developed in the deterministic framework. However, in OMA the data utilized for modal parameter 
estimation are random response, which is stochastic process. Although the major traditional modal 
identification algorithms, such as PRCE, EITD, ERA, etc., developed for EMA, can be employed 
for OMA, the difference in theoretical background and basic formulation should be notified. 

PRCE and EITD procedures are based on the modal decomposition of impulse response function 
(IRF), derived from first order equation of linear time-invariant (LTI) system in modal coordinates:  
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In the modal decomposition formula, Λ is the eigenvalue matrix of Ac, from which modal 
frequencies and damping ratios can be calculated. Φ, Γ are mode shape matrix and modal 
participation factor matrix, respectively. There are three steps for modal identification: (1) 
extraction of Φ and Z matrices, (2) calculation of modal frequencies and damping ratios from Z 
matrix, (3) computation of modal participation factor matrix Γ. 

In the OMA case, modal decomposition of COR matrix, instead of IRF matrix, is utilized as basic 
formulation for modal identification: 
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It is seen that only first two steps are required for estimation of modal frequencies and damping 
ratios and mode shapes. No modal participation factor matrix can be obtained due to missing of 
input information.  

On the other hand, traditional ERA is based on the system decomposition of IRF matrices: 
c
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Modal frequencies and damping ratios can be computed from the eignevalues of the system matrix 
Ac , mode shape and modal participation factor matrices can be calculated from the eigenvector 
matrix Φ plus output matrix c and input inference matrices b. 

In the OMA case, instead of IRF, COR matrix is utilized. The COR matrix can be derived from 
stochastic state-space representation as 
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Obviously, system matrices Ac and C can be estimated as before via ERA algorithm. However, as 
an OMA procedure, no modal participation factor matrix can be identified. 

2.2 OMA in TD, ARMA-type procedures 

A general auto-regression moving average (ARMA) model can also be employed for operational 
modal identification. Corresponding to multiple natural excitations, multi-dimensional ARMA 
model, i.e. Vector ARMA or ARMAV model should be applied.  

The most important traditional system identification techniques are the Prediction-Error Method 
(PEM) [14].A number of algorithms in the PEM framework has been proposed. These algorithms 
identify the parameters of a model by minimizing the prediction errors. The application of PEM to 
estimate an ARMA model results in a highly nonlinear optimization problem. PEM-ARMAV 
methods have applied to ambient modal identification in the middle of 1990’s [15]. Modal 
parameters can be computed from the ARMAV model by the coefficient matrices of the AR 



polynomials. Two major drawbacks are inherent for PEM-ARMAV type OMA procedures: 
computational intensive and requirement of initial “guess” for the parameters to be identified. It 
makes ARMAV-type procedures rather difficult to apply, especially for large dimension structures.  

A Linear Multi-Stage (LMS) ARMAV method for effective OMA in the presence of noise is 
proposed recently [16]. The LMS-ARMAV method overcomes some of the difficulties that have 
rendered ARMAV identification in use for mechanical structures. 

System identification based on ARMA model is a non-linear process and should be implemented in 
iteration way. The non-linearity is caused by the MA parameters. However, for the modal 
identification, only modal parameters are interested, that means only the coefficient matrices of the 
AR polynomial are required. For this purpose, another important approach in the classical system 
identification, i.e. Instrument Variable Method (IVM) can be applied. Making use of “past” output 
data as “instrument variable”, which is assumed uncorrelated to the input (white noise) residuals, 
the original ARMA model turns to be AR model and its coefficient matrices are nothing but 
covariance (COV) matrices of the output data. It should be noted that covariance function (COV) is 
equal to correlation function (COR) for the zero-mean random process. Although derived in 
different way, the final equations from the ARMAV model-based IVM are exactly the same as 
from NExT-type PRCE or EITD, where COR is utilized for modal identification. The dimension of 
the AR coefficient matrices is equal to the number of inputs or references for PRCE, and number of 
output for EITD. Modal parameters can then be calculated by the eigenvalue decomposition of the 
companion matrix of the AR polynomial [17]∼ [19]. Due to noise contamination, actual model 
order should be defined much higher in practice. 

It is worth noticing that PEM-ARMAV is one-stage, or “data-driven” approach, and IVM-ARMAV 
methods, or MExT-type PRCE and EITD, belong to two-stage, or “covariance-driven” approach. 

2.3 OMA in Time Domain, Stochastic Realization-based Procedures 

The ARMAV model-based methods are primarily used with so-called black-box model structures. 
The use of such models is quite cumbersome in multivariable case. For large scale system, a state-
space model is preferred. As mentioned before that NExT-type ERA for OMA is actually one of 
the stochastic system realization approaches based on state-space model. 

System realization, i.e. recovering or identification of system matrices, was developed way back to 
1960’s. A classical contribution in deterministic system realization by Ho & Kalman was published 
in 1966, where a scheme for recovering the system matrices from impulse response function (IRF) 
is outlined [20]. Refinements of the scheme are reported in 1974 and 1978, respectively, 
introducing singular value decomposition (SVD) as a tool to reduce the noise inference in the IRF 
measurements [21], [22]. The SVD-based system realization was firstly adapted for modal 
identification and named as Eigensystem Realization (ERA) in 1984.  

Almost in parallel, stochastic system realization was developed in 1970’s [23], based on  discrete-
time stochastic state-space equation, and applied to modal identification in middle of 1980’s [24]. 
The key feature of the stochastic system realization is the system decomposition of the COV matrix 
instead of IRF matrix in deterministic system realization. It leads to factorization of Hankel 
covariance matrix. 

Since eigenvalues of the system are calculated via SVD of IRF matrices (for EMA), or covariance 
matrix (for OMA), the system realization-based approaches can also be taken as subspace system 
identification method. In the modal community, stochastic realization based procedures are often 
called as Covariance-driven Stochastic Subspace Identification (SSI) methods.  



There are three major methods for implementation of stochastic realization-based or covariance-
driven SSI procedures: (1) the Principal Component (PC) method, (2) The Canonical Correlation, 
or Canonical Variant Analysis (CVA) method and (3) The Un-weighted Principal Component 
(UPC) method. In PC method, Hankel covariance matrix is directly utilized for SVD. In CVA and 
UPC methods, weighted Hankel covariance matrix is adopted via different weighting [25]. 

It can be shown that UPC method performs balanced model reduction on minimum-phase model 
corresponding to the given covariance. Therefore, UPC is also called as Balanced Realization (BR). 
It is interested to note that UPC method, not PC one, is a stochastic counterpart of the deterministic 
realization/identification algorithm, e.g. ERA. 

The physical explanation of the three methods in stochastic system realization is different, i.e. to 
select partial states maximizing correlation w.r.t. output prediction (PC), or mutual information 
w.r.t. future response (CVA), or retaining maximum reconstruction (prediction) efficiency for the 
output (UPC). The principal components of the resulting Hankel matrices HPC, HCVA and HUPC are, 
of course, all different. However, computer simulation, as well practical application, reveals that no 
significant accuracy difference has been observed for PC, CVA and UPC implementations of the 
stochastic realization-based OMA procedures. 

The main procedure of the stochastic realization-based operational modal identification can be 
summarized as following four steps: 
1). Estimation of covariance matrix from measure output data; 
2). SVD of (weighted) Hankel covariance matrix to estimate observability and stochastic 

controllability  matrices; 
3). Computation of discrete-time stochastic system matrices  via LS techniques; 
4). Calculation of modal parameters from the system matrices. 

As in the deterministic case, block Hankel matrix and its shifted version can be used to estimate the 
system matrix, which is corresponding to ERA. Instead of Hankel matrix shift, the other approach 
is to utilize observabily matrix and its shift to estimate system matrices. There are few possible 
numerical solutions to estimate the system matrix, e.g. ordinary least squares (OLS), total least 
squares (TLS) and partial least squares (PLS) techniques, etc.  

2.4 OMA in Time Domain, Stochastic Subspace-based Procedures 

In 1990’s, a new subspace-based state-space system identification (4SID) is developed in system 
and control engineering, which offers numerically reliable and effective state-space model for 
complex dynamic system directly from measured data [26]. No non-linear search is required and 
computational complexity is therefore dramatically reduced compared to PEM-ARMAV or LMS-
ARMAV procedures. Stochastic Subspace Identification technique (SSI) has been followed making 
use of output-only measurements for a system subjected to stochastic excitation [27].  

Since the state vector is not observable, in order to predict the system response, its prediction (or 
estimate) should be utilized. It can be proved that the optimal predictor/estimate of the state, in the 
Gaussian case, is the condition mean of the state given all previous output measurements. Its linear 
algebraic explanation is the orthogonal prediction of the state vector to the “past” output data vector. 
Making use of state predictor/estimate leads to Kalman filter for LTI system, and can be expressed 
by so-called innovation state-space equation model: 
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Where the predicted state )(ˆ kx is called Kalman state, K is Kalman Filter Gain and e(k) is the 
innovation, which is a zero-mean Gaussian white noise process. The major difference between two 



state-space representations is that the state vector is substituted by its prediction, and that the two 
input/noise processes have been converted into one, i.e. innovation.  

The main procedure of the SSI technique can be summarized as following four steps: 
1) Computation of the projection of the row space of the “future” outputs on the row pace of the 

“past” outputs via robust numerical technique such as QR decomposition; 
2) Estimation of Kalman filter state via SVD of the above projection matrix; 
3) Estimation of the discrete-time system matrices via LS techniques; 
4) Calculation of modal parameters as before. 

Similar to the stochastic realization-based approach, the stochastic subspace–based identification 
can be implemented in three methods depending on the choices of weighting matrices for 
projection matrix: (1) the Un-weighted Principal Component (UPC) method, (2) the Principal 
Component (PC) method and (3) the Canonical Variant Analysis (CVA) method. 

The advantages of SSI are that (1) it makes direct use of stochastic response data without 
estimation of covariance as first stage; (2) it cannot only be employed for white noise excitation, 
but also for color noise.  

SSI has soon been adopted for operational modal identification. Since SSI makes direct use of 
stochastic response data to identify modal parameters, it is also called data-driven SSI. The data-
driven SSI is belongs to one-stage modal identification category. 

2.5 OMA in Frequency Domain, FDD-type Procedures 

Frequency domain OMA methods are simply based on the formula of input and output power 
spectrum density (PSD) relationship for stochastic process: [28]. 
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Where Gxx(jω), Gyy(jω) are input and output PSD matrix, respectively, H(jω) is the FRF matrix, 
which can be expressed as partial fractions form via poles λr and residues Rr 
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output measurements are taken as references, then H(jω) are square matrix and rr φγ = . Assuming 
input is white noise process, i.e. Gxx(jω) equals to constant, the modal decomposition of the output 
PSD matrix Gyy(jω) can be derived as modal decomposition: 
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scalar for white noise excitation. In the vicinity of a modal frequency the PSD can be approximated:  
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Classical FD approach is Peak Picking technique (PP). PP is based on the fact that modal 
frequencies directly obtained from the PSD plot at the peak, and mode shapes can be obtained as a 
column of the PSD matrix at the corresponding damped natural frequency. 

The PP technique gives reasonable modal estimates if the modes are well separated [29]. The main 
advantages compared to the TD techniques are that it has no bother with computational modes and 



is much faster and simpler to use. However, for a complex structure, PSD peak picking technique is 
inaccurate. The accuracy of modal frequency estimation is limited to the frequency resolution of 
the PSD spectrum, operational deflection shapes is obtained instead of real mode shapes, damping 
ratio estimation via half-power point is inaccurate or impossible. Moreover, PP technique is hardly 
applied for the structure with closely spaced modes, which is often encountered when dealing with 
real world complex structures. 

The challenge is if we could develop a FD technique that has all the advantages but doesn’t have 
the disadvantages. A new FD technique named as Frequency Domain Decomposition (FDD) was 
proposed in 2000 [30]. The key of the second stage is conducting SVD of output PSD, estimated at 
discrete frequencies ω=ωi, 
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When only rth mode is dominate at the modal frequency ωr, The PSD matrix approximates to a rank 
one matrix as  

H
iiiiyy uusjG

ri

11)( =
→ωω

ω  

Compared to the previous PSD approximation formula, it is seen that the first singular vector at the 
rth resonance is an estimate of the rth mode shape. 1

ˆ
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PSD matrix will be equal to the number of multiplicity of the modes. Therefore, the SV function 
can suitably be utilized as modal indication function (MIF). Modal frequencies can be located by 
the peaks of the SV plots. From the corresponding singular vectors, mode shapes can be obtained. 
Since SVD has the ability of separating signal space from noise space, the modes can be indicated 
from SV plots, and closely spaced modes or even repeated modes can easily be detected.  

The first generation of FDD can only estimate modal frequencies and mode shapes. The second 
generation of FDD, which is called as Enhanced FDD or EFDD has been followed for estimation of 
not only modal frequencies and mode shapes, but damping ratios [31]. To do so, the singular value 
data near the peak with corresponding singular vector having enough high MAC value are 
transferred back to time domain via inverse FFT, which is approximation of correlation function of 
the SDOF system. From the free decay function of the S-DOF system, the modal frequency and the 
damping ratio can then calculated by the logarithmic decrement (Logdec) technique.  

Since only truncated data, i.e. the data near the peak of the SV plot, are used for the inverse FTT to 
calculate approximate correlation function of the corresponding S-DOF system. It may cause bias 
error in damping estimation. Moreover, when dealing with closely spaced modes, beat phenomena 
would be encountered, which can leads inaccurate estimation of damping ratio by Logdec 
technique.  

The third generation of FDD, i.e. Frequency-Spatial Domain Decomposition (FSDD), has been 
developed recently [32]. FSDD makes use of the singular vector, computed via SVD of output PSD 
with spatial measurements, to enhance the PSD.  In most cases the enhanced PSD in the vicinity of 
a mode can be approximated as S-DOF system, and therefore an S-DOF curve fitter can be adopted 
to estimate relevant modal frequency and damping ratio.  

2.6 OMA in Frequency Domain, LSCF-type Procedures 

In the traditional EMA, the major FD modal identification approach is based on parametric transfer 
function model represented by rational fraction polynomial (RFP). The SISO, SIMO and MIMO 
versions of RFP method were developed in 1980’s based on least squares solution [33]∼[35]. In 
classical system identification, maximum likelihood (ML) estimators were developed to deal with 
noisy measurements [36]. A MLFD method was proposed making use of FRF measurements for 



modal identification in late 1990’s [37]. MLFD is a typical non-linear estimator, and should be 
implemented as iteration process. A least-squares complex frequency-domain (LSCF) estimation 
method was introduced to find initial values for the iterative MLFD method [37]. It was found that 
these “initial values” yielded enough accurate modal parameters with much smaller computational 
effort. However, LSCF, which is based on common-denominator model or scalar matrix-fraction 
description, has two major shortcomings: (1) mode shapes and modal partition factor are difficult 
to obtain by reducing the residues to a rank-one matrix using the SVD; (2) the closely spaced poles 
will erroneously show up as a single pole. A polyreference version of the LSCF method, based on 
right matrix-fraction model, has been developed recently [38]. With p-LSCF, the above mentioned 
shortcomings can be eliminated.  

The aforementioned FD EMA methods are all based on modal decomposition of FRF matrix. In 
parallel, these methods can be adopted for OMA based on modal decomposition of half PSD, 
computed from FFT of the COR with positive time lags via correlogram, instead of FRF matrix 
[39], [40]! 

3. Major Issues in OMA 
3.1 Full or Partial References 

From NExT point of view, we can pick up any output measurements as the references for OMA via 
PRCE. EITD and ERA procedures as mentioned before. In stochastic realization-based OMA or 
covariance-driven SSI, as well as data-driven SSI, the formulations developed based on using all 
the output measurements as references. To reduce the dimension of the involved matrices, and 
therefore the computational efforts, only a subset of the outputs is required for references [41]. 
However, there is theoretical question to be answered, where the reference and real input point are 
not exactly the same.  

3.2 Multiple sensor setups 

In reality, only limited of the sensors and/or data acquisition channels are available in the field 
response measurements. Therefore, multiple sensor setups are evoked. However, to merge data 
from different setups will fail when response process is non-stationary for different records. A 
covariance matrix normalization technique has been developed to resolve this issue. It is interested 
to note that normalization has extra advantage of smoothing out the nonstationarity in the data. 

3.3 Robust w.r.t. Nonstationary Excitation  

The output data will be nonstationary due to nonstationarity of the natural excitation in operational 
condition. In both covariance-driven and data-driven SSI, the system matrices, and therefore modal 
parameters, are only determined from observability matrix, and the excitation only affects the 
stochastic controllability matrix through the cross covariance matrix between state and output 
vectors. When the excitation is nonstationary, so is the response data. Therefore the estimated 
covariance matrix with limited output data would not converge. However, it is proved that 
approximate factorization of the covariance matrix still hold and the SSI algorithm can be applied 
to output data due to nonstationary excitation.  

3.4 Data-driven vs Covariance-driven SSI  

There are clear similarities between covariance-driven and data-driven SSI. The first step of both 
approaches can be referred to as data reduction: the former via covariance estimation from Hankel 
data matrix and the latter via data vector projection by QR-factorization of the Hankel data matrix. 
Two approaches can not only be applied for data reduction but also data averaging/smoothing. The 
SVD utilized in two approaches play a similar role in computing system matrices. It can be shown 



that by an appropriate weighting for the Hankel covariance matrix, covariance-driven algorithms 
can be fitted into the same framework of the data-driven SSI; 

There are a few advantages of data-driven SSI over covariance-driven ones: 
1) The data-driven approach is numerically more robust due to its square root algorithm compare 

the matrix squared up in covariance-driven case;  
2) Validation tools can be developed for data-driven SSI; 
3) A spectrum formulation is available based on identified innovation state-space model. 
4) Modal decomposition of the total response can be made with data-driven SSI 

3.5 Structural mode Sorting 

Most TD OMA methods, i.e. IVM-ARMAV methods, including NExT-type of PRCE and EITD, 
stochastic realization-based and stochastic subspace-based identification methods, are all based on 
sound theoretical background. However, all the TD modal identification methods encounter a very 
serious and difficult problem in properly determination of model order and distinguishing structural 
modes from spurious or noise modes, which must be introduced to accommodate measurement 
noise, leakage, residue, non-linearity and un-modeled effects. The tools developed until now, e.g. 
modal indication functions and stability diagrams, etc., have limited effect. Over or under-
determination of structural modes results in inaccurate estimation of the modal parameters of the 
true structural modes, especially mode shapes and damping ratios. 

On the other hand, FD methods perform much better in structural mode determination. FDD 
techniques can almost eliminate spurious mode problem via modal indication function obtained 
from SVD. The p-LSCF technique usually results a clean stability diagram in wide frequency range.  

3.6 Bias and unbiased modal parameter estimation 

Most operational modal identification procedures, as their counterparts in EMA, can be reduced to 
solve a set of linear equations. Ordinary Least Squares (LS) solution is normally adopted. 
Therefore, bias error could occur due to noise effects, including measurement noise, leakage, 
residue, nonlinearity and un-modeled effects. Even latest developed FD p-LSCF method can not 
avoid this bias issue. Theoretically, bias error can be reduced via employing TLS and PLS, etc. 
instead of ordinary LS. However, engineering practice has shown that little improvement can be 
obtained with rather heavy computational penalty.  

Time domain PEM and frequency domain MLE have the advantage of taking noise model into 
account, and therefore can better handle noisy measurements, and having the capability of 
extracting unbiased modal parameters with confidence level. The main drawback is computation 
intensive and need initial “guess” for iterative search.  

3.7. Mode Shape Scaling 

One of the critical issues is that OMA can not offer mode shape scaling due to lack of input 
information. If the identified modal model is going to be used for structural response simulation or 
for structural modification, then the scaling factors of the mode shapes must be known. Also in 
health monitoring applications where damage is to be identified, the scaling factors might be 
important. Some suggestion has been given in the literature for solving this problem [42]. However, 
the approach gives exact answers only when there is a full set of modes, and robustness for a 
truncated modal space has not been demonstrated. Recently a new approach based on repeated 
testing, where mass changes are introduced at the points and the response is measured, have been 
proposed [43]∼[45]. This approach seems more appealing, since to scale a certain mode only that 
particular mode needs to be known.  



4. CONCLUDING REMARKS 
The major development of the operational modal identification methods for OMA is presented. It 
includes four time domain approaches, i.e. NExT-type, ARMAV model-based, stochastic 
realization-based and stochastic sub-space approaches, and two frequency domain approaches, i.e. 
FDD-type and output-only LSCF-type methods. 

Major TD modal identification methods in traditional EMA, such as PRCE, EITD and ERA, can be 
directly adapted for OMA from NExT point of view. However, it should be aware that the 
theoretical basis is different. Stochastic framework should be considered in OMA, instead of 
deterministic framework for EMA. It is interested to notice that OMA version of PRCE and EITD 
can more properly derived from ARMAV model via classical instrument variable method. The 
OMA version of ERA is actually one of the stochastic system realization algorithms.  

Operational modal identification methods can also be classified as two-stage and one-stage 
approaches. The two-stage approach estimates covariance/correlation function (TD) or power 
spectrum density (FD) as first stage, and then extract modal parameters from output COV/COR or 
PSD data. NExT-type procedures are typical two-stage approach. PEM-ARMAV methods are 
typical one-stage approach. Covariance-driven and data drive stochastic subspace identification 
(SSI) are typical two-stage and one stage method respectively;  

It is interesting to notice that not only NExT-type procedures can clearly find their counterparts in 
traditional EMA. Most output-only version of system realization-based and subspace-based modal 
identification methods can be adopted from their input/output counterparts. Since modal 
decomposition formula for output PSD matrix, equivalent to the one for FRF matrix, can be derived. 
Moreover, when correlogram is utilized to estimate COR and half PSD is obtained by using only 
the COR with positive time lag, the modal decomposition formula for output PSD looks exactly the 
same as the one for FRF matrix, except modal participation factor is replaced by reference vector. 
Therefore, most of FD modal identification techniques developed for traditional EMA can easily be 
adapted for OMA. 

The major issues in OMA are also summarized in the paper, which cover full or partial references, 
multiple sensor setups, nonstationary excitation and response, data-driven vs covariance-driven SSI, 
structural mode sorting, bias or unbiased modal parameter estimation, as well as Mode Shape 
Scaling; 

Accuracy issue would be more significant when dealing with many measurements with very noisy 
data from complex structures in operational condition. Mode shape scaling issue needs to be further 
studied when OMA is intended to be applied for structural response simulation, for structural 
modification, and for structural health monitoring with vibration-based damage identification; 

Although engineering applications have shown that favorable modal parameters can be extracted 
under the nonwhite or/and even nonstationary natural excitation, further theoretical proof based on 
system identification and stochastic process is still missing.   

REFERENCES 
[1] James, G. H., Carne, T.G., Lauffer, J.P. Nard, A. R., Modal Testing Using Natural Excitation, 

Proc. of the 10-th IMAC, San Diego, CA, USA, Feb. 3-7, 1992 
[2] Vold, H. et. al., A Multi-Input Modal Estimation Algorithm for Mini-Computers, SAE Paper 

No. 820194, 1982 
[3] Brown, D.L. et al., Parameter Estimation Techniques for Modal Analysis, SAE Paper 

No.790221, 1979 



[4] Juang, J. -N. and Pappa, R., An Eigensystem Realization Algorithm (ERA) for Modal 
Parameter Identification, NASA/JPL Workshop on Identification and Control of Flexible 
Space Structures, Pasadena, CA, USA, 1984 

[5] Ibrahim, S.R. & Mikulcik, E.C., A Method for the Direct Identification of Vibration 
parameters from the Free Response, The Shock and Vibration Bulletin 47, Sept. 1977 

[6] Fukuzono, K. Investigation of Multiple Reference Ibrahim Time Domain Modal Parameter 
Estimation Technique, M.S. Thesis, Dept. of Mechanical and Industry Engineering, 
University of Cincinnati, 1986 

[7] Zhang, L.-M., Yao, Y. -X. & Lu, M. -F., An Improved Time Domain Polyreference Method 
for Modal Identification, Mechanical System and Signal Processing, 1(4), 1987 

[8] Juang, J. –N., Cooper, J. E. And Wright, J. R., An Eigensystem Realization Algorithm Using 
Data Correlation (ERA/DC) for Modal Parameter Identification, Control-Theory and 
Advanced Technology, 4(1), 1988. 

[9] Zhang, L.-M., On the Two-stage Time Domain Modal Identification, Proc. Of IMAC XXI, 
2003 

[10] Cole, H. A., “On-Line Failure Detection and Damping Measurements of Aerospace Structures 
by Random Decrement Signature,” NASA CR-2205, 1973. 

[11] Ibrahim, S. R. “Random Decrement Technique for Modal Identification of Structures,” 
Journal of Spacecraft and Rockets, Vol. 14, No.1977, pp. 696-700. 

[12] Vandiver, J. K. et al., A Mathematical Basis for the Random Decrement Vibration Signature 
Analysis Technique, ASME J. of Mechanical Design, Vo. 104, April 1982 

[13] Asmussen, J.C., Modal Analysis based on the Random Decrement Technique, Ph.D. Thesis, 
Aalborg University, Denmark, 1997 

[14] Ljung, L., System Identification, Theory for the User, Prentice Hall. Englewood Cliffs, 1987 
[15] Andersen, Palle, Identification of Civil Engineering Structures using Vector ARMAR Model, 

Ph.D. Thesis, Aalborg University, Denmark, 1997 
[16] Petsounis, K.A. and Fassois,S.D., Parametric Time-Domain Methods for the Identification of 

Vibrating Structures⎯A Critical Comparison and Assessment, Mechanical System and Signal 
Processing, v.15, n6, 2001 

[17] Leuridan, J.M., Brown, D.L., Allemang, R.J., Time Domain Parameter Identification Methods 
for Linear Modal Analysis: A Unifying Approach, ASME Paper Number 85-DET-90, ASME 
Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design,8 pp., 1985. 

[18] Allemang, R.J., Brown, D.L., Fladung, W., Modal Parameter Estimation: A Unified Matrix 
Polynomial Approach", Proceedings of the IMAC, pp.501-514, 1994. 

[19] Peeters, B. and De Roeck, G., Stochastic System Identification for Operational Modal 
Analysis: A Review, J. of Dynamic System, Measurement and Control, V. 123, Dec. 2001 

[20] Ho, B. and Kalman, R.E., Efficient Construction of Linear State Variable Models from 
Input/output Functions, Regelungstechnik 14, 1966 

[21] Zeiger, H and McEwen, A.J., Approximate Linear Realizations of Given Dimension via Ho’s 
Algorithm, IEEE Trans. Automatic Control, 1974 

[22] Kung, S., A New Identification and Model Reduction Algorithm via Singular Value 
Decomposition, Proc. Of 12th Asilomar Conf. on Circuits, System and Computers, 1978 

[23] Akaike, H., Stochastic Theory of Minimal Realization, IEEE Trans. Automatic Control, AC-
19, 1974 

[24] Benveniste,A. and Fuche, J.J., Single Simple Modal Identification of a Nonstationary 
Stochastic Process, IEEE Trans. Automatic Control, AC-30, 1985 



[25] Arun, K.S. and Kung, S.Y., Balanced Approximation of Stochastic System, SIAM J. Matrix 
Analysis Application, 11(1),  1990 

[26] Overschee, P. van & De Moor, B., Subspace identification for linear systems – Theory, 
Implementation, Applications. Kluwer Academic Publishers, ISBN 0-7923-9717-7, 1996. 

[27] Van Overchee, P. and De Moor, B., Subspace Algorithms for the Stochastic Identification 
Problem, Automatica 29 (3), 1993 

[28] Bandat, J. & Piersiol, A., <Random Data, Analysis and Measurement Procedures>, John 
‘Wiley 7 Son, New York, USA, 1986 

[29] Ventura, C. E. & Tomas H., “Structural Assessment by Modal Analysis in Western Canada”, 
Proc. of the IMAC XV, Orlando, Florida, 1997. 

[30] Brincker, R., Zhang, L.-M. and Anderson, P., Modal Identification from Ambient Response 
using Frequency Domain Decomposition, Proc. of the 18th IMAC, San Antonio, TX, USA,  
2000 

[31] Brincker, R.; Ventura, C.; Andersen, P. Damping Estimation by Frequency Domain 
Decomposition, IMAC XIX, Kissimmee, USA, 2001. 

[32] Zhang, L.-M. Wang, T. And Tamura, Y., Frequency-spatial Domain Decomposition 
Technique with Application to Operational Modal Analysis of Civil Engineering Structures, 
IOMAC, Copenhagen, Denmark, April, 2005 

[33] Richardson M H. Parameter Estimation from Frequency Response Measurements Using 
Rational Fraction Polynomials, Proceeding of 1st IMAC, November, 1982 

[34] Richardson M H. Global Curve Fitting of Frequency Response Measurements Using the 
Rational Fraction Polynomial Method, Proceeding of 3rd IMAC, January, 1985 

[35] Shih, C.Y., Tsuei, Y.G., Allemang, R.J., Brown, D.L., A Frequency Domain Global 
Parameter Estimation Method for Multiple Reference Frequency Response Measurements, 
Mechanical Systems and Signal Processing, 2(4), 1988. 

[36] Pintelon, R. and Schoukens, J., System Identification: A Frequency Domain Approach, IEEE 
Press and John Wiley & Son, 2001 

[37] Guillaume, F. et. al., Frequency Domain Maximum Likelihood Identification of Modal 
Parameters with Confidence Levels, Proc. 0f ISMA 23, Leuven, Belgium, 1998 

[38] Guillaume, P. et. al., A Poly-reference Implementation of the Least-Squares Complex 
Frequency Domain Estimator, IMAC XXI, Kissimmee, USA, 2003 

[39] Peeters, B. et al., PolyMAX modal parameter estimation from operational data. In Proc. of 
ISMA 2004, Leuven, Belgium, September 2004.  

[40] Peeters, B. et al., Operational PolyMAX for estimating the dynamic properties of a stadium 
structure during a football game. In Proceedings of IMAC XXIII, Orlando (FL), USA, 2005 

[41] Peeters, B. and De Roeck,G., Reference-based Stochastic Subspace Identification for Output-
only Modal Analysis, Mechanical System & Signal Processing, 13(6), 1999 

[42] Bernal, D and Gunes, B., Damage Localization in Output-Only systems: A Flexibility Based 
Approach. In Proc. of the International Modal Analysis Conference (IMAC) XX, Los Angeles 
(CA), February, 2002 

[43] Parloo, E. et al., Sensitivity-Based Operational Mode Shape Normalization. Mechanical 
Systems and Signal Processing, 16(5), 2002 

[44] Brincker, R. and P Andersen: A Way of Getting Scaled Mode Shapes in Output Only Modal 
Testing, IMAC XXI, Kissemmee (FL), USA, February, 2003 

[45] Aenlle, M.L., Rune Brincker and Canteli, A. F., Some Methods to Determine Scaled Mode 
Shapes in Natural Input Modal Analysis, IMAC XXIII, Orlando (FL), USA, 2005 


