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SUMMARY: .A common mathematical framework is established for a unified two-stage time domain (TD) modal 
identification, based on a formula of modal decomposition of the time response function (TRF), represented as 
impulse response function, free decay response, or correlation function, as well as data correlation of the TRF. 
Possible implementations for the TD two-stage modal identification, which cover a variety of well-known techniques, 
and numerical consideration, are summarized to provide better understanding of the different techniques, and 
guidelines for effective applications. Major issues, e.g. measured data selection, structural mode sorting and 
estimation uncertainty analysis. As well as further improvements of this seemly-matured two-stage time domain 
modal identification are discussed. 
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INTRODUCTION 
 
System identification is of great importance in many engineering area. Modal identification, developed in vibration 
engineering, is to build modal model, and therefore reduces the problem to modal parameter estimation. One of the 
major features of modal identification is normally making use of Frequency Response Functions (FRFs) or Time 
Response Functions (TRFs), instead of input/output data in time domain (TD) or frequency domain (FD) directly.  
 
Two-stage TD modal identification is a unified approach for estimation of modal parameters from time response 
function (TRF) based on common formulation of modal decomposition of TRF. Here TRF is defined to represent 
unit Impulse Response Function (IRF), Free Decay Response (FDR), Random Decrement (RDD) signature, as well 
as Cross Correlation Function (CCF). IRF is the counterpart of FRF in FD, and can be calculated via inverse FFT. 
Cross Correlation Functions (CCFs) are normally calculated from cross Power Spectrum Density (PSD) via inverse 
FFT in the output only cases. RDD signature was explained as free decay of the system at first [1], [2] and then 
proved as correlation function of the response, and can be computed through many ways from random response of 
the system [3], [4]. FDR, as well as CCF, can also be expressed as a sum of exponentially decaying sinusoids. Each 
decaying sinusoids has a damped natural frequency and damping ratio that is identical to the one of the 



corresponding structural mode. FDRs can be measured either by impulse excitation or sudden termination of board 
band force excitation... 
 
Historically, Complex Exponential algorithm is one of the earliest multiple degree-of-freedom modal identification 
techniques in TD (1974), and improved via Least Squares solution and expended for Single Input Multi-Output 
(SIMO) case as Least Squares Complex Exponential (LSCE) algorithm in 1977 [5]. In the same year, well-known 
modal identification procedureIbrahim Time Domain (ITD) was developed. ITD was formulated as SIMO 
technique at very beginning [6]. However, it can be easily extended for Multi-Input Multi-Output (MIMO) 
application [7], though. The first MIMO version of modal identification algorithm, which was an important 
breakthrough in experimental modal analysis was the technique called as Polyreference Complex Exponential 
(PRCE), as an extension of LSCE, developed in 1982 [8]. Eigensystem Realization Algorithm (ERA), based on 
system realization theory in linear system analysis, was derived in 1984 [9] from state-space model, which is often 
utilized in control engineering. To reduce the influence of noise contamination in the TRF data, an improved PRCE 
called Improved Polyreference technique (IPCE), which makes use of correlation of the TRF data, was developed in 
1987[10]. Data correlation version of ERA, as ERA/DC [11], followed in 1988. Due to data correlation, which acts 
as a correlation filter, the order of the model to be identified can be reduced and identification accuracy is increased.  
 
In early 1990s, Natural Excitation Technique (NExT) was proposed for modal identification from output data only in 
the case of natural excitation [12]. NExT actually is an idea that suggests using cross correlation function (CCF) of 
the random response of the structure under natural excitation, which often is broadband random process. All the 
MIMO versions of TD modal identification procedures mentioned above can be used as NExT. Based on this idea, 
the two-stage modal identification techniques cannot only be adopted in traditional modal analysis, but also for 
ambient or operational modal analysis. 
 
A unified two-stage modal identification approach in TD is proposed during a re-visit to modal identification 
developed in the last three decades. The unified approach is based on the formula of modal decomposition of TRF, 
and can cover all above-mentioned TD modal identification algorithms. Under the same common mathematical 
framework, we can have better understanding of all different implementation, the features, advantages and 
disadvantages of different algorithms. Numerical accuracy or/and efficiency can be improved via comparisons of 
different implementation. As a part of the unified approach, implementation and numerical considerations, as well as 
major issues for the two-stage TD modal identification will be discussed in some details in the paper. A separate 
paper will be published to summaries TRF estimation for the two-stage modal identification.  
 

1. COMMON FRAMEWORK FOR MODAL IDENTIFICATION 
 
The two-stage TD modal identification approach is based on a common mathematical model as the modal 
decomposition of the Time Response Function (TRF) 
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Where hk represents kth sampling point of the TRF, and is an m×l matrix estimated from m response measurements 
with respect to l excitation or reference locations. Φ, Γ  is m×N complex mode shape matrix and l×N modal par tition 
factor (MPF), respectively. Λ is an N×N complex modal frequency matrix, from which modal frequency ωr and 
damping ration ζr   can be simply calculated from the following formulation 
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In the analytical modeling, N is the number of degree-of-freedoms (DOFs) of the linear time-invariant dynamic 
system: 
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In the above equations f(t), y(t) and x(t), are input, output and displacement state vector with dimensions of l, m and 
N, respectively. M, K and D are N×N mass, stiffness and damping matrices, respectively. b, c is N×l input influence 



matrix and m×N output influence matrix, respectively. When the TRF decomposition formula is utilized for modal 
identification, N will stand for the number of modes . 
 
The common mathematical framework of the two-stage TD modal identification can be described based on the basic 
mathematical model as follows. Making p block row shift of the basic Eqn 1-1 when the number of measurements is 
smaller than modes to be identified yields 
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Or in compact form 

 



















Φ

Φ
Φ

=Φ





















=ΓΦ=

p
p

T

Z

Z

h

h
h

HwhereH
MM

~,~~~ 1

0

 (1-5) 

Assume there are N-pair of complex modes, and mp=2N, therefore the matrix Φ~  has full row rank of mp. Since the 
m(1+p) × mp matrix Φ~  has m more rows than columns, there must exist a m × m(1+p) matrix A~ so that 
 0~~

=ΦA    (1-6) 
From Eqn 1-4 we can obtain the following equation 
 0~~

=HA  (1-7) 
Partitioning matrix A

~  into (1+p) blocks m × m matrices yields 
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An multivariable Autoregration (AR) equation is therefore obtained, which can be normalized as Ap=I and written as  
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In order to solve AR coefficient matrix m×m matrix Ai (i=0,1,↑p-1), an over determined equation could be arranged 
via block column shift of matrix H~ as follows 
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The matrix [ ]110 −pAAA L  can, therefore, be estimated via Least Squares (LS) technique, when q is selected to 
satisfy the relation of lq> mp. 
 
Having the estimates of the system characteristics matrix [ ]110 −pAAA L , we can build its relation with modal 

parameters contained in Z and Φ  via block matrix form of Eqn 1-6  
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A standard eigenvalue problem can be formulated by constructing a companion matrix of the AR coefficient 
matrices 
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From the eigenvalue matrix Z of the above eigensolution, the complex modal frequency matrix Λ=diag[λr] can be 
calculated by the following formulas 
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Modal frequencies and damping ratios can then be computed as mentioned in previous section. The modal matrix 
can be obtained from the first m lines of the eigenvector matrix. 
 
To obtain full sets of modal parameters, the MPF matrix Γ  should be calculated. Again, over determined equation 
could be formulated to compute MPF matrix from measured TRF data and estimated Φ~  by LS solution 
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Where ms>2N is required to form LS solution. 
 
Another way of manipulating the basic equation is to make block column shift instead of row shift  
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Where lq=2N is assumed. In light of the exact same argument, we have the following AR equation 
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In this case, the dimension of the AR coefficient matrix Ai is l×l (i=0, 1,↑q). Three similar equations for modal 
identification can be derived following the same procedure as follows.  
(1) An over determined equation for solving AR coefficient matrices ] 
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Where mp should be larger than lq to ensure LS solution.  
(2) Standard eigenvalue problem for Modal frequencies, damping ratios and MPFs 
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(3) Linear equation for modal matrix Φ ,  
 [ ] [ ]TsTT
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In order to compute the modal matrix via LSE, ls>2N is required. 
 
 



2. IMPLEMENTATION & NUMERICAL CONSIDERATIONS 
 
It is clear from the previous section that implementation of the unified two-stage TD modal identification procedure 
consists of three steps.  

1) Solving an over determined linear equations by LS technique to estimate AR coefficient block matrices 
with dimensions of m×m, or l×l, where m and l are number of outputs and inputs, respectively; 

2) To calculate modal frequencies and dampings, as well as MPFs, or mode shapes, by solving standard 
eigenvalue problems; 

3) To obtain mode shapes, or MPFs from LSE. 
Many possible implementations and relevant numerical considerations are summarized as follows. 
 
Assume p=2, it means that m=N, the equation for AR coefficient block matrix is written as  
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Or in compact form 
 

10 HAH =  (2-1’) 

System matrix A can then be solved by normal equation 
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This is exactly the ITD technique [6]. A double LS solution (DLS) was suggested as the average of the above two 
solutions [13]. 
 
When the number of response locations is less than the number of modes, i.e. m<N, the block row shift acts as 
“virtual measurements”. The same LS solution is adopted in ITD technique. However, much smaller matrix 
containing AR coefficient matrices with dimensions of m×mp is required instead of mp×mp companion matrix A! 
 
The direct utilization of normal equation is sometimes unstable due to the condition number of the data matrix. The 
more accurate way for LS solution is making use of orthogonal decomposition 

 [ ][ ] [ ] 1
2

1
0 00 RQ

Q
Q

RQRH =






==  (2-3) 

Where H0 is an mp×lq data matrix with lq>mp, Q is an lp×lp orthogonal matrix, and R is of dimension mp×mp, or 
2N×2N, lower-triangular matrix with positive numbers in its diagonal. Orthogonal decomposition can numerically be 
implemented in one of the following methods: (1) Householder transformation, (2) Given method, or (3) improved 
Gram-Schmitt orthogonal method.  
 
Another numerical technique for LS solution with ill-conditioned coefficient matrix is to adopt Singular Value 
Decomposition (SVD) of the TRF data matrix H0 
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Where S is diagonal singular value matrix U, V are orthogonal matrices consists of corresponding left and right 
singular vectors. Sns is the sub-matrix with first ns dominate singular values, Uns and Vns are the partitions with 
corresponding singular vectors. The system matrix for ITD technique AI  can then be estimated as 
 T
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It is interesting to aware that for the ERA [9], its system matrix AE is obtained as 
 2/1

1
2/1 −−= nsns

T
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Obviously, there is a similarity transformation between these two system matrices 
 11 , −− == nsnsIE SUPwherePAPA  (2-7) 
The eigenvalues calculated for two system matrices are exactly the same; the two eigenvector matrices are related by 
the linear transformation. 
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It is seen from Eqn1-12 that the complex modal frequencies and mode shapes are related to a high order (mp×mp) 



eigenvalue problem. Actually, only eigenvalue matrix Z needs to be computed. The eigenvector Φ~  can then be 
obtained from a linear equation with (m×m) coefficient matrix 
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where nrez t
r

r 2,2,1, L== ∆λ . One numerically efficient way to solve this equation is making use of SVD, in this case 
actually is Eigenvalue Decomposition (EVD), of the coefficient matrix of the eigenvector φr 
 
In the original presentation [6] the ITD is formulated as a single SIMO technique, and only un-scaled mode shapes 
can be calculated. However, it can actually be utilized in MIMO case. In order to obtain scaled mode shapes, the 
MPF matr ix should be calculated as the third step of the two-stage modal identification procedure.  
 
It can easily be observed that anther way of implementation of the two-stage modal identification is following the 
Eqn 1-16 ∼ 1-18, which are the fundamental equations for the PRCE. When l=1, as a special case, the technique is 
further reduced to be Least Squares Complex Exponential (LSCE) algorithm, and can also be derived from applying 
Prony’s algorithm [5] 
 

3. MAJOR ISSUES IN TWO-STAGE MODAL IDENTIFICATION 
 
The implementations of the two-stage TD modal identification procedures are basically matured. However, several 
issues should be carefully dealt with in order to make correct and accurate identification. The following are the major 
three of them. 
 
(1) Data Selection 
 
The two-stage modal identification is based on discrete time domain TRF (e.g. IRF, FDF or CCF) data. In order to 
identify all the modes in the frequency range of interest, the sampling theorem should be satisfied, i.e. the sampling 
rate should at least be larger than twice of the maximum value of the frequency band (fs ≥ 2fmax). It means that the 
data spacing must be small enough. On the other hand, in order to model the slow decay of the low frequency modes 
well, there must be the TRF data refer to times after a significant amount of decay has occurred. This would result 
very large dimension of the data matrix for estimation of system characteristics matrix. However, it can bee seen 
from the Eqn 1-10 and 1-16, the actual maximum data number we need are kmax=p+q-1, where p and q satisfy either 
mp=2N and lq>mp, or lq=2N and mp>lq. Normally, we have more TRF data available than needed. This fact 
provides the possibility of making choice of the measured data, including deletion of spurious data. Meanwhile 
careful and appropriate data selections are required for two-stage modal identification in order to reduce bias and 
variance errors. 
 
(2) Modal Sorting 
 
The number of structural modes is normally unknown before modal identification. Therefore, the assumed mode 
number N should always larger than true structural mode number ns. In reality, even knowing the true mode number 
we still cannot let N= ns. In order to accommodate all unwanted effects in the measured TRF data, e.g. input and 
response noise, leakage, res iduals, non-linearity, etc., computational modes with number of nc should be assigned to 
compensate these unwanted effects. Therefore, after the entire N= ns + nc modes have been identified, the ns 
structural modes should then be differentiated and detected, or the other nc computational modes must be deleted. 
 
There are three relevant methods to distinguish structural modes from computation ones, or modal sorting. First, the 
total number of modes should be defined before identification. Two indication techniques are available, which are 
based on Error Chart and Rank Chart, respectively. The error chart, as the plot of equation error versus model order 
is actually the by -product when making LS solution via QR decomposition. The rank chart can directly be obtained 
from SVD. Unfortunately, both of them work unfavorably in model order determination. The second method of 
modal sorting is making use of so called Stability Diagram. Stability diagram is a plot of possible modes, as modal 
frequency points, versus the model order. The structural modes are supposed to converge with the increasing of the 
model order. The convergence criterion can be the difference of subsequent two modal frequencies, or/and modal 
damping, and or/and mode shapes, represented by Modal Assurance Criterion (MAC). Experiences reveal that 



spurious modes cannot all be deleted based on such convergence criterion. The third method of distinguish structural 
modes from computational modes is to adopt specific modal indicator. Several modal indicators were proposed for 
different modal identification algorithms, e.g. Modal Confidence Factor (MCF) for ITD [14], extended latter for 
PRCE [15], Modal Amplitude Criterion (MAC) and Modal Phase Collinearity (MPC) [16], among others. An effort 
was made to extend all modal indicators mentioned above plus a Modal Partition Indicator (MPI) for unified two-
stage modal identification [17]. It is believed that the combination of stability diagram and modal indicator(s) would 
be the best way for modal sorting.  
  
(3) Identi fication Accuracy 
 
The essence of the 2-stage modal identification approach is actually a Least Squares Estimation (LSE). The 
advantages of LSE are simple to implement and fast in computation. However, there is a serious drawback in LSE, 
i.e. it causes bias error in the estimates. In the LSE, a prediction error, or residual, ),2,1(ˆ L=−= khh kkkε  is 
assumed when IRF, FDR and CCF are directly used as TRF to form the data matrix. It is well know that LSE would 
be unbiased only if the prediction error is white noise, i.e.  
 [ ] 0,0)( ≠= iforiRE εε

 (3-1) 

In reality, εk would never be such a white noise; even the system corrupted only by output/measurement noise and it 
is white! Therefore, bias error caused by colorness of the prediction error becomes one major problem in the LSE-
based two-stage modal identification. There are two possible ways to overcome bias problem caused by LSE: one is 
to properly model the noise (noise modeling methods); the other is to eliminate bias error without noise modeling.  
 
Actually noise modeling is not only to deal with measurement noise but also to compensate leakage, residuals and 
non-linearity. Many issues still remain to be explored. In the ambient modal identification cases, white excitation 
signals are normally assumed. How ever, colored excitation can be dealt with if a “shaping filter” is used to model the 
color noise. [18] Noise modeling will also bring lots of new problems, e.g. noise model selection, model order 
determination, and iteration convergence, etc. There are ot her methods available to reduce or eliminate bias error 
introduced by LSE, for example, the methods via Instrument Variable (IV), Double LS (DLS), Total LS (TLS) and 
LS with data correlation. IV procedure is also iterative, starting from LS estimates. DLS makes use of averaging of 
overestimates and under-estimate to reduce the bias error. TLS is base on seemly more reasonable error assumption 
that the noises are on the measurements in both sides of the equation, i.e. H0  and 

1
~H , instead of only on H0 [10]. 

However, even TLS is utilize, bias will still result if ε is colored noise! As mentioned in Section 1, the two-stage 
modal identification can be implemented using correlation filtering, or data correlation of TRF (IRF, FDR and CCF) 
[10] , [11]. It can be proved that the LS estimation become theoretically unbiased, when correlation filter, or data 
correlation, is invoked with enough correlation data.  
 

CONCLUDING REMARKS  
 
1. A common mathematical framework for two-stage modal identification in time domain has been established. The 
unified two -stage modal identification is a typical global approach and can be applied to real world complex 
structures to identify full sets of modal parameters, including modal frequencies, damping ratios, scaled mode shapes 
and modal partition factors. It can also be utilized for operational modal analysis using free decay response, or 
correlation functions from output measurements only to obtain modal frequencies, damping ratios and un-scaled 
mode shapes. 
  
2. There is variety of possible implementations for the TD two-stage modal identification, including well-known 
techniques, such as ITD, EITD, LSCE, PRCE, IPCE, ERA, ERA/DC, etc. Much better understanding for different 
techniques can be obtained under the common mathematical framework. Estimation accuracy and/or efficiency can 
be increased when numerical considerations are taken care of in the implementation.  
 
3. Measured data selection, structural mode sorting, and estimation uncertainty analysis are three major issues for 
successful application of the two-stage TD modal identification. It will become more significant when dealing with 
array of measurement data from a complex structure, or very noisy data from operational or ambient measurements. 
4. The common mathematical model for two -stage TD modal identification is the formula of modal decomposition of 
the time response function (TRF) which is defined as a sum of exponentially decaying sinusoids and represented as 



impulse response function, (IRF), free decay response, or cross correlation function (CCF). The basic idea behind the 
two-stage TD modal identification is the least squares estimation (LSE), which has the advantages of simplicity and 
speed in implementation. 
 
5. The two-stage TD modal identificatio n, after almost three decades development, seems matured. However, several 
issues are still remaining to be resolved. For examples, the influence of data selection to the estimation uncertainty 
(with both variance and bias errors); the more effective means or new modal indicators for structural modal sorting; 
further reduction of bias and variance error in the estimates while dealing with array of measurements from large 
complex structures, or very noisy data from operational or ambient measurements.  
 
6. This paper summaries the two-stage modal identification in time domain. It’s counterpart in frequency domain, 
and one-stage modal identification based on state-space model making direct use of input/output or output data only 
will be discussed in other papers as the outcomes of re -visiting to the modal identification developed in last 30 yeaas.  
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