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Abstract

Modal validation is of paramount importance for all two-
stage time domain modal identification algorithms.
However. duc to a higher noise/signal ratio in
operational/ambient modal analysis, being able to determine
the right model order and to distinguish between structural
modes and computational modes become more significant
than in traditional modal analysis. The two major modal
indicators, i.e. Modal Confidence Factor (MCF) and Modal
Amplitude Coherence (MAmC) are extended to two-stage
time domain modal identification algorithms, together with
a newly developed indicator, named as Modal Participation
Indicator (MPI). The application of the three indicators is
illustrated on different cases of operational/ambient modal
identification. Three major tme domain modal
identification algorithms are used, the Polyreference
Complex Exponential (PRCE), Extended Ibrahim Time
Domain (EITD), Eigensystem Realization Algorithm
(ERA). The three identification algorithms are implemented
from a unified point-of-view with the modal indicators,
Numerical simulations are conducted on a two-story
building structure and on an aircraft model and it is
investigated how the modal indicators work to distinguish
the physical modes from the computational modes.

Introduction

Operational modal identification has attracted great
attention in civil, aerospace and mechanical engineering in
recent years. Compared to traditional modal analysis, which
is normally conducted in the lab environment making use of
both input-output data, operational/ambicnt modal analysis
has many advantages:
= No artificial excitation needed and no boundary
condition simulation required;
* Dynamic characteristics of the whole system, instead
of component, can be obtained;
* For all or part of measurement coordinates can be

used as references. the operational modl
identification is always Multi-Input (Reference)-
Multi-Output MIMO algorithm. The closed-spaced
or even repeated modes can easily be handled, and,
therefore, suitable for real world complex structures;

* The model identified under real loading will te
linearized due to broad band ambient/random
excitation, for much more representative working
points;

* Operational modal identification can not only be
utilized for structural dynamics analysis and design,
but also In-sitn vibration based structural healh
monitoring and damage identification.

Many time domain MIMO modal identification algorithms
such as Polyreference Complex Exponential (PRCE).
Extended Ibrahim Time Domain (EITD), Eigensvstem
Realization Algorithm (ERA} and its extension [1]-]6). etc.
have been developed in 1980°s. Impulse Response
Functions (IRF) is measured at first, normally via inverse
FFT from FRF, and then modal parameters are identified
via above-mentioned algorithms using IRF data. The 2-
stage modal identification techmiques have been
successfully used for traditional modal analysis. However,
they can also be adopted for operational modal analysis. In
the 1990’s a Natural Excitation Techmique (NEXT) was
proposed [7]. NEXT is based on the principle that
Correlation  Function (CF) measured under naturl
excitation (or operational/ambient condition) can be
expressed as a sum of decaying sinusoids. Each decaving
sinusoid has a damped natural frequency, damping ratio and
mode shape coefficient that is identical to the one of the
corresponding structural mode. According to this principle,
all the 2-stage time domain MIMO identification techniques
can be adopted for operational/ambient modal identification
by using CFs instead of IRFs.

However, all the time domain (TD)} modal identfication
algorithms have a serious problem on model order .



determination. When extracting physical or structural
modes. the TD modal identification algorithm always
generates spurious or computational modes to account for
unwanted effects, such as noise, leakage. residuals and non-
linearity’s. etc. The computational modes fulfill an
important role in that they permit more accurate modal
estimation by supplving statistical DOF to absorb (hese
effects. In the traditional modal identification IRF can be
obtained via inverse FFT of Frequency Response Function
(FRF). and may have less computational modes. For
operational modal identification. which makes use of
correlation function calculated from random response data.
the model order delerminaiion and siructeral modes
distinguishing become much more significant. Therefore. it
is extremely important to determine the correci number of
model order or total mumber of modes at first, and then to
distinguish structural modes from computational ones. In
order to accomplish this important task. many modal
validation approaches have been developed.

Modal validation can be performed via three kind
approaches: visual inspection, modal indicator and diagram.
Visual inspection of mode shapes and comparing measured
data with those synthesized from the estimated modal
parameters are typical examples of these qualitative
approaches. The second kind of approaches make use of
quantitative modal indicators, such as Modal Assurance
Criterion {MAC), Modal Confidence Factor (MCF), Modal
Amplitude Coherence (MAmC), etc. Graphical validation
involves tracking the model error, or rank of the data
matrix, or estimating frequency, damping as a function of
model order. The resulting Emor Chart, Rank Chart or
Stability Diagram is then utilized for modal validation.

In this paper two modal indicators. MCF and MAmC, are
extended and a new onc named as Modal Participation
Indicator (MPI) is developed for major 2-stage time domain
modal identification algorithms. Numerical simulations via
a two-story building and an aircraft model are conducted to
show the performance of the three modal indicators for
operational modal identification algorithms—PRCE. EITD
and ERA.

Modal Indicators
1. Modal Assurance Criterion (MAC).

Modal Scale Factor (MSF) and MAC are used widely to
compare two modal vectors. The MSF gives a least squares
estimate of the ratio between two vectors

MSF(3, 4,0 =2 b (1
MAC is defined as [8]
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Which is actually the squ covekadioey oonifioning o
the two modal vectors. Ii MAC 18 wury the mo moddl
vectors are identical within modal scale factor. Therefore
the MAC can be utilized as a2 modal indicator for differe::
modal estimates.

2. Modal Confidence Factor (MCF)

Ibrahim introduced the concept of MCF by generating
pseudo-measurements in the ITD modal identification
algorithm [9]. These pseudo-measurements are actuatly
delayed physical time signals. MCF exploits redundant
phase relationships that are satisfied by physical modes. but
which are meaningless for computational modes. The MCF
has been extended for the PRCE [10] For r-th modec MCF
can be calenlated by the following formuia

MCF, = ‘1’ ¢ hepat (3)
r r
Where A is the eigenvalue, At is the sampling time interval
and p is a positive integer. For a physical mode. the MCF
would be unity, whereas computational modes would have a
MCF of arbitrary phase and amplimde. A MCF close to one
is thus a necessary, but not sufficient reason for an
eigenvector to be associated with a physical mode.

It is obvious that MCF can also be used for other 2-stage
TD modal identification algorithms, such as EITD, ERA.
etc. MCF is a complex number. For simplicity only the
nonm can be used for modal indicator. The main drawback
of the method is that the amount of the data is doubled.

3. Modal Amplitéude Coherence (MAmMC)

MAmC was proposed by the authors of ERA [11] for
distinguishing structural modes from noise modes with
ERA. We have extended the MAmC to all 2-stage TD
modal identification algorithms (PRCE. EITD, ERA. eic).
The basic formulation for MAmC is derived as follows.

For a linear system. the map from input 1o output can be
described by Markov parameter (Impulse Response
Function in traditional modal analysis or Covariance
Functions m Ambient modal analysis) sequence

¥ =[l, 1 5y Yo e
Where Nt is the number of the data points. In the modal
coordinate the Markov parameter can be expressed as

r= 1
Where ¢, A, and ¥, are r-th modal vector, eigenvalue and
modal participation factor, rtespectively. Define (he
sequence
@r = [:!}i{ "‘rYr ?“’2 ) ‘:\:t—l?f] (6)

Which represents the time series reconstructed from the
identified eigenvalue and modal participation factor. The
Markov parameter becomes



Yo =34,4, 7
r=1

It can be seen that the sequence ¢ is associated with mode
shape ¢.. and is called the identified Modal Amplitude time
history for the r-th mode. The modal amplitude can also be
calculated directly from measured Markov parameters via
SVD of Hankel matrix, and denoted as g. With noise-
polluted data and nonzero singular values truncated, the
identified modai amplitude is an approximation of the one
calculated directly from measured Markov parameters. The
MAmC can then be defined as correlation coefficient or
coherence function of the two modal amplitude vectors as
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4. Modal Participation Indicator (MPT)
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In the ambient/operational modal analysis, Correlation or
Covariance Function can be measured as Markov
parameter, and cxpressed via eigenvalue, modal vector
(mode shape) and modal participation factor:

Ve =205, )
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Choosing all the measurement coordinates as references, the
dimension of meodal partition vector is then equal to
corresponding mode shape. We can therefore define Modal
Participation Scale (MPS) ¢, as

Y=o, (10)
The contribution of the r-th mode to the covariance matrix
can then be expressed as

Ykr = ard)rd)f:‘“kr_l (11)
MPI represents a kind of “kinetic energy™ in time domain,
and can be adopted as a modal indicator to distinguish
structurat and computational modes. MPI can be calculated
via least square solution of the two vectors as the following
formmla

\IPI bt (12)
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When implementing, r-th medal participation indicator
MPI 1s normalized as the percentage of the “total energy™.

Numerical Simulations for Operational Modal
Identification

The MAmC, MPF and MCF are applied in major 2-stage
time domain modal identification algorithms and applied to
operational modal identification as modal indicators.

Three major time domain modal identification algorithms,
PRCE, EITD and ERA, are implemented via unified point-
of-view as follows:
<> Establish Hankel matrices H, and H, from measured
covariance functions;

< (Calculate system matrix via least squares solution
from Hankel matrices for PRCE or EITD;

< (alculate system input and measurement matrices via
singular value decomposition for ERA:

< Eigenvalue solution of system matrix 1o obtain
eigenvalues and mode shapes for EXTD or cigenvalues
and modal participation vectors for PRCE;

< Least squares solution to obtain modal participation
vectors for EITD, and mode shapes for PRCE:

<= TFor ERA, cigenvalue solution of the system matrix to
obtain eigenvalues and mode shapes together with
measurement matrix, and modal participation vectors
from input matrix;

Two examples with closely spaced modes are used 1o show
the performance of the different modal indicators.

1. Two-story Building

The first numerical example is a two-storv building, which
is simulated by a lumped parameter system with 6 degrees
of freedom. The measurements are assumed to be taken so
that the rigid body motions of the floor slaps can be
estimated. The geometry and the measurement points are
shown in Figure 1. This structure has two sets of close
modes. The first two modes are first bending modes, and
these two bending modes are close, but not very close. The
third mode is a torsion mode. The fourth and fifih modes
are very closed second bending modes. Figure 2 depicts
first 5 modes. The response was simulated using a vector
ARMA model to ensure that the simulated responses were
covariance equivalent [13]. The model was loaded by white
noise, and the response was analyzed using the 2-stage time
domain identification techniques introduced above. The
simulated time series had a length of 10,000 data points
with 20 % noise added.

Computer simulations of operational modal identification
were conducted using PRCE, EITD and ERA with MAmC,
MPI and MCF as modal indicators. Table 1 to 3 present
MAmC and MPI results via PRCE, EITD and ERA
identification, respectively. Tables 4 and 5 show the resulis
of MCF via EITD and PRCE separately for double data are
needed in order to compute MCF. The main parameters to
be selected in the numerical simulation are the number of
total modes (n) and the number of data points. In the Tables
“*” denoctes the target modal frequencies. The range of
damping ratio, 0-5 %, is used as the first “filter” to
eliminaie computational modes. It can be seen that all three
modal indicators work pretty well in distinguishing
structural modes from computation modes. Compared to
MAmC and MCF, the newly proposed MPI has better
performance.

2. GARTEUR Aircraft Model
An aircraft model called GARTEUR developed by the



Group of Aeronautical Research and Technology in
EURope is adopted as the second example [1-4] The model
represents the dynamic characteristics of real world aircraft.
and is widely used in Europe. The main requirement for the
GARTEUR model is to simulate dynamic characteristics of
real world aircraft. GARTEUR model has the following
features: (1) A group of 3 very closely spaced modes, (2)
Frequency range from 5 to 60 Hertz, (3) Special damping.
Treatment via adding visco-elastic malerials on the wing
surface; (4) A joimr at the wing/fuselage conmection for
transportation with model dimension of 2 by 2 meters

The Finite Element Model (FEM) of Garteur consists of 51
three-dimensional beam elements and 68 nodal points with
altogether 408 DOF model. Figure 3 presents the first 6
modes of GARTEUR model. The first six natural
frequencies are: 6.09Hz, 1580z, 33.01Hz. 33.66Hz
35.14Hz and 49,79 Hz.

Markov parameters are synthesized from the modal
parameters calculated from FEM with 1.00% damping
ration added. Aliogether 24 DOFs arc selected as
measurement locations. To simulate the noise-pollution test
data. 10% Gaussian distributed noise is added to
synthesized Markov parameters. Sampling frcquency is
130Hz with 1024 sampling points

As for the 2-story building case, all three modal
identification algorithms arc used for GARTEUR example.
However. the simulation data are synthesized using 2-input
14-output measurement, therefore, only MAmC and MCF
are adopted for modal indication. Tables 6 to 10 show the
performance of MAmC and MCF for operational modal
identification algorithms PRCE. EITD and ERA. 11 is
observed that the two modal indicators exhibit favorable
performance

Concluding Remarks

l. Two modal indicators. Modal Confidence Factor
(MCF) and Modal Amplitnde Coherence (MAMC) are
extended to major 2-stage time domain operational
modal identification algorithns:

2. A new modal indicator named as Modal Participation
Indicator {MPT) is developed and implemented:

3. Three major operational/ambient modal identification
algorithms.  Polyreference Complex  Exponential
(PRCE). Extended Ibrahim Time Domain (EITD) and
Eigensystem Realization Algorithm (ERA). are
implemented from unified point-of-view together with
three modal indicators;,

4. Numerical simulations arc conducled uwsing two
examples: 2-story building and an aircraft model, The
results show that all three modal indicators work pretty
well in  distinguishing structural  modes  from
computational ones;

3. MCF necds double data, and hence more computing

intensive and time consuming; MAmC often results
with the mumber closed to unity and some times is
hardly to separate noise modes from the structural ones;

6. Newly proposed Modal Participation Indicator (MPI)
can clearly indicate the structural modes in most cases,
and performs beftter than the other two indicators;

7. The identification results are normally depending on
the parameter selection for most of 2-stage time domain
modal dentification. To finally determine the true
structural modes Stability Diagram is suggested
together with medal indicators.
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Figure 3 The First Six Modes of the GARTEUR Aircraft Model



Table 1 Results of EITD for Two-Story Building (n=12)

Mode | Freq(Hz) | Damp(%) | MamC | MPL (%)
1 18.69* 246 1.00 3.02
2 20.97* 2.14 1.00 7.11
3 38.08 1.86 1.00 0.01
4 38.14* (.89 1.00 7.04
5 55.03* 0.65 1.00 26.05
6 53.08* .64 1.00 35.67
7 35.13 2.30 0.99 0.11
8 66.64 4.33 0.90 0.38

Table 3. Results of ERA for Two-Story Building (n=%)

Mode | Freq{Hz) | Damp.(%) | MAmC MPL(%)
1 18.68* 2.19 1.00 18.62
2 20.93+* 1.88 1.00 18.56
3 38.16* 1.03 1.00 18.36
4 54.62 1.40 0.96 6.22
5 35.01* 0.55 1.00 15.59
6 35.17* 0.54 1.00 15.94
7 59.19 3.7 0.54 6.70

Table 3. Results of PRCE for Two-Story Building (n=13)

Table 2. Results of PRCE for Two-Story Buil

Mode | Freq(Hz) | Damp.(%) | MamC MPL (%6}
1 18.76* 2.61 1.00 1.89
2 20.88* 1.87 1.00 4.32
3 38.14 0.79 (.98 0.60
4 38.15* 0.99 1.00 4.84
3 534.93 2.26 0.86 .20
6 55.02* 0.61 0.81 42.68
7 35.09* 0.67 1.00 44.92
8 62.01 322 0.67 0.40
9 69.39 0.23 0.24 0.15

Table 4. Results of EITD for Two-Story Building (n=13)

Mode |  Freq.(Hz) Damp (%) MCF
i 18.70* 2.15 0.98
2 20.91* 1.80 0.94
3 37.31 175 021
4 38.12% 1.32 (.53
5 38.19* 0.86 0.93
& 53,00 0.74 0.89
7 55.03 1.11 0.7)
8 55.16% 0.54 0.93
9 55.49 3.80 0.06
10 61.10 2.37 0.20

Table 6. Results of EITD for GARTEUR.(n=48)

Mode Freq.(Hz) Damp.(%) MCF Mode Freq.(Hz) Damp.(%) MAmC
] 18.65% 2.20 0.92 i 6.11* 1.10 1.00
2 21.01* 1.65 0.93 2 13.52 0.27 0.95
3 2278 3.29 0.71 3 15.80* 0.99 1.00
4 35.03 1.56 0.43 4 17.64 0.77 0.75
5 38.15* 1.00 0.93 3 19.81 4.87 0.98
6 38.38 1.22 0.92 6 20.58 105 0.89
7 53.57 0.46 0.92 7 26.66 (.82 0.90
8 54.08% 0.61 0.94 8 28.16 0.31 0.92
9 55.13* 0.57 0.94 9 29.40 0.65 0.90
10 55.23 1.03 0.89 10 30.16 245 0.97
1 55.37 3.06 0.72 1 33.00* 1.20 1.00
12 58.29 0.34 0.80 12 33.51% 1.31 1.00
13 61.22 0.02 0.33 13 33.84 3.78 0.99
14 62.41 4.21 0.36 14 35.00* 0.91 1.00

[ 1s 66.52 4.32 0.72 15 37.01 4.06 0.99
16 37.01 4.06 0.99




Table 7. Results of PRCE for GARTEUR.(n=20) Table 8. Results of ERA for GARTEUR.(n=20)

Mode Freq.(Hz) Damp.(%) MAmC Mode Freq.(Hz) Damp.(%) MamC
1 6.09* 1.05 1.00 1 6.09* 1.03 1.00
2 7.97 0.64 0.37 2 15.80* 1.02 1.00
3 11.73 .65 0.36 3 17.19 28.33 0.29
4 15.80* 0.76 1.00 4 24.26 22.65 0.22
3 17.73 0.74 0.72 3 32.99* 1.02 1.00
6 20.39 3.24 0.99 6 33.65* 1.11 1.00
7 24.38 2.16 0.83 7 3371 13.05 0.47
3 26.65 1.17 0.55 8 35.12% 1.02 1.00
9 30.67 347 0.98 9 43.06 8.29 0.48
10 33.00* 1.14 (.99 10 45.04 27.86 0.3%
11 33.74* 0.93 1.00 11 47.16 7.77 0.21
12 35.20* 0.53 0.99 12 32.21 10.04 0.41
13 37.51 2.03 1.00 13 36.89 9.51 .30

14 02 93 3.37 0.33

15 03.77 16.11 0.16

16 71.26 6.51 0.32
Table 9, Results of EITD for GARTEUR (n=48) Table 10. Results of PRCE for GARTEUR {n=30}

Mode |  Freq.(Hz) Damp.(%) MCF Mode | Freq(llz) Damp.(%) MCF
1 6.10% 0.91 0.99 1 6.09* 1.03 0.9
2 10.24 3.53 0.64 2 15.36* 0.69 0.57
3 1145 1.89 0.68 3 24.10 2.14 0.7%
4 12.63 0.58 0.68 4 29.94 0.39 0.53
3 15.81% (1.85 0.94 5 29.94 (.39 0.55
6 i7.13 4.38 0.33 6 32.99% 1.08 0.90
7 18.92 1.43 0.27 7 33.76* 0.88 0.94
8 20.10 2.18 0.84 3 35.06* 0.92 0.92
9 24.05 3.59 0.33
10 24.79 4.53 0.17
11 26.19 2.67 0.35
12 27.04 2.64 0.45
13 27.97 4.60 0.12
14 28.64 1.81 0.85
15 29.68 1.46 0.40
16 31.51 3.03 0.58
17 31.61 2.11 0.63
18 32.968 0.89 0.88
19 33.63* 1.00 0.94
20 34.24 3.18 0.22
21 35.13* 1.01 0.98

L2 36.10 0.63 0.26




