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Abstract

In this paper a new frequency domain technique is
introduced for the modal identification from ambient
responses, i.c. in the case where the modal parameters
must be estimated without knowing the input exciting
the system. By its user friendliness the technique is
closely related to the classical approach where the modal
parameters are estimated by simple peak picking.
However, by introducing a decomposition of the spectral
density function matrix, the response can be separated
into a set of single degree of freedom systems, each
corresponding to an individual mode. By using this
decomposition technique close modes can be identified
with high accuracy even in the case of strong noise
contamination of the signals.
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Introduction

Modal identification from ambient responses is normally
associated with the identification of modal parameters from
the natural responses of civil engineering structures, space
structures and large mechanical structures. Normally, in
these cases the loads are unknown, and thus, the modal
identification has to be carried out based on the responses
only. Real case examples on some civil engineering
structures can be found in Ventura and Horyna [1] or
Andersen et al. [2].

The present paper deals with a new way of identifying the
modal parameters of a structure from the responses only
when the structure is loaded by a broad-banded excitation.

The technique presented in this paper is an extension of the
classical frequency domain approach often referred to as the
Basic Frequency Domain (BFD) technique, or the Peak
Picking technique. The classical approach is based on
simple signal processing using the Discrete Fourier
Transform, and is using the fact that well separated modes
can be estimated directly from the power spectral density
matrix at the peak, Bendat and Piersol [3]. Other
implementations of the technique make use of the coherence
between channels, Felber [4].

The classical technique gives reasonable estimates of natural
frequencies and mode shapes if the modes are well
separated. However, in the case of close modes, it can be
difficult to detect the close modes, and even in the case
where close modes are detected, estimates becomes heavily
biased. Further, the frequency estimates are limited by the
frequency resolution of the spectral density estimate, and in
all cases, damping estimation is uncertain or impossible.



The main advantage of the classical approach compared to
other approaches, such as two-stage time domain
identification technique by Polyreference, Vold et al [5],
Ibrahim Time Domain, Ibrahim and Milkulcik [6] ERA,
Juang and Papa [7], or one-stage time domain identification
teheniques such as the Stochastic Subspace Identification
algorithm, Van Overschee and De Moor [8], is its user-
friendliness. It is fast, simple to use, and gives the user a
“feeling” of the data he or she is dealing with,

The technique presented in this paper is a Frequency
Domain Decomposition (FDD) technique. It removes all the
disadvantages associated with the classical approach, but
keeps the user-friendliness.

In this paper it is shown that taking the Singular Value
Decomposition (SVD) of the spectral matrix, the spectral
matrix is decomposed into a set of auto spectral density
functions, each corresponding to a single degree of freedom
(SDOF) system. This result is exact in the case where the
loading is white noise, the structure is lightly damped, and
when the mode shapes of close modes are geometrically
orthogonal. If these assumptions are not satisfied, the
decomposition into SDOF systems is approximate, but still
the results are significantly more accurate than the results of
the classical approach.

Theoretical Background of Frequency Domain
Decompostion

The relationship between the unkaiowit fiprits a6} and the
measured responses y(r) can be expressed as, Bendat &
Piersol [9]:
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Where G, (jw) is the r x r Power Spectral Density (PSD)
matrix of the input, r is the number of inputs, G, (jw) is
the m x m PSD matrix of the responses, m is the number of
responses, [ (jw) isthe mxr Frequency Response

Function (FRF) matrix, and “—* and superscript 7 denote
complex conjugate and transpose, respectively.

The FRF can be written in partial fraction, i.e. pole/residue
form
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where 7 is the number of modes, A, is the pole and R, 1s
the residue
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where g, , ¥, is the mode shape vector and the modal

participation vector, respectively. Suppose the input is white
noise, i.e. its PSD is a constant matrix, i.e. Gxx (jo)=C,

then Equation (1) becomes
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where superscript A denotes complex conjugate and
transpose. Multiplying the two partial fraction factors and
making use of the Heaviside partiul fraction theorem, afier
some mathematical manipulations, the output PSD can be
reduced to a pole/residue form as follows
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where 4, is the k th residue matrix of the output PSD. As

the output PSD itself the residue matrix isan mxm
hermitian matrix and is given by

-jo-24,
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The contribution to the residue from the £ th mode is given
by
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where «;, is minus the real part of the pole A, = —a, + jo, .
As it appears, this term becomes dominating when the

damping is light, and thus, is case of light damping, the
residue becomes proportional to the mode shape vector
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where d, is a scalar constant. At a certain frequency @ only

a limited number of modes will contribute significantly,
typically one or two modes. Let this set of modes be denoted



by Sub(w) . Thus, in the case of a lightly damped structure,
the response spectral density can always be written
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Identification Algorithm

In the Frequency Domain Decomposition (FDD)
identification, the first step is to estimate the power spectral

density matrix. The estimate of the output PSD G 1 (@)

known at discrete frequencies = e, is then decomposed by

taking the Singular Value Decomposition (SVD) of the
matrix

G, (jo)=USU% 10

= [ud,u,,,...,um] is a unitary matrix
holding the singular vectors u,, and S, is a diagonal matrix
holding the scalar singular values s, . Near a peak

corresponding to the & th mode in the spectrum this mode or
may be a possible close mode will be dominating,. If only the
& th mode is dominating there will only be one term in
Equation (9). Thus, in this case, the first singular vector

u,, is an estimate of the mode shape

where the matrix U, =

i
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and the corresponding singular value is the amto power
spectral density function of the corresponding single degree
of freedom system, refer to Equation (9). This power
spectral density function is identified around the peak by

comparing the mode shape estimate ;3 with the singular
vectors for the frequency lines around the peak, As long as a

singular vector is found that has high MAC value with gﬁ the

corresponding singular value belongs to the SDOF density
function.

From the piece of the SDOF density function obtained
around the peak of the PSD, the natural frequency and the
damping can be obtained. In this paper the piece of the
SDOF PSD was taken back to time domain by inverse FFT,
and the frequency and the damping was simply estimated
from the crossing times and the logarithmic decrement of
the corresponding SDOF auto correlation function.

In the case two modes are dominating, the first singular
vector will always be a good estimate of the mode shape of

the strongest mode. However, in case the two modes are
orthogal, the first two singular vectors are unbiased
estimates of the corresponding mode shape vectors.

Example, Simulation of a 2-Storey Building

In this example the response of a two-storey building is
simulated used a lumped parameter system with 6 degrees of
freedom. The measurements are assumed to be taken so that
the rigid body motions of the floor slaps can be estimated.
The geometry and the measurement points are shown in
Figure 2.

This structure has two sets of close modes. The first two
modes are bending modes, and the model was calibrated in
such a way, that these two bending modes were close, but
not very close. The third mode is a torsion mode, and the
fourth and fifth modes are again close bending modes. The
model was calibrated in such a way that the fourth and fifth
modes were very close, nearly repeated poles

The response was simulated using a vector ARMA model to
ensure that the simulated responses were covariance
equivalent, Andersen et al, [10]. The model was loaded by
white noise, and the response was analysed using the
identification technique intreduced above. The simulated
time series had a length of 10000 data points and three cases
were considered: no noise, 10 % noise and 20 % noise
added.

The singular values of the spectral density function matrix is
shown in Figure 1. As it appears, the closc modes are clearly
indicated in this plot. Using the FDD identification
procedure decribed above, the natural frequencies and
damping ratios were identified with high accuracy, se Table
1 for the natural frequencies and Table 2 for the damping
values. As it appears, the technique is not sensitive to the
noise. Also the mode shape estimates were very close to the
exact results. Note especially the mode shapes for the two
nearly repeated modes {the fourth and the fifth) in Figure 5.
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Figure 1. Singular values of the power spectral density
matrix of the response.



IMAC Model, Simulated dala, no neise Frequency: 38188 + 0.000Mz - Damping Ratio: 1.118 £ 0.000%

Fipure 2. Geomelry of 2 storev-building model. Figure 4. Estimated mode shape for the third mode (building
Measurement points are indicated by arrows. torsion).

Frequency: 18.658 & 0.00CHz - Damping Ratio: 2.175 4 0.000% Frequency: 54.959 + 0.000Hz - Damping Ratio; 0.552 1 0.000%

Frequency: 20927 £ 0.000Hz - Camping Ratio: 1.960 + 0.000% Frequency: 55,129 + 0.000Hz - Damping Rato: 0.761 1 0.000%

Figure 3. Estimated mode shapes for close modes, the first Figure 5. Estimated mode shapes for nearly repeated modes,
and the second mode (building bending). the fourth and the fifth mode (building bending).



Table 1. Estimated Natural Frequencies

the structure was loaded by rotating machinery, Brincker et
al. [13], [14] and Moller et al. [15].

Exact Without 10 % 20 %
noise noise noise
(Hz) (Hz) (Hz) (Hz) References
18.686 18.676 18.661 18.665 [t1 Ventura, Carlos E. and Tomas Horyna: “Structural
21.054 20.930 20.927 20.938 Assesment by Modal Analysis in Western Canada”,
38.166 | 38.188 | 38.18%8 | 38.206 Prog. of the 15™ International Modal Analysis
55.055 55.036 35.011 54.999 Conference, Orlando, Florida, Orlando, 1997.
55,121 55.129 55.133 55.125
2} Andersen, P, R. Brincker, B. Peeters, G. De Roeck,
L. Hermans and C. Kramer: “Comparison of
Table 2. Estimated Damprng Ratios system Identification Methods Using Ambient
Exact Without 10 % 20 4 Bridge Test Data™, ”, Proc. of the 17" International
noise noise noise Modal Analysis Conference, Kissimee, Florida,
(%) (%) (%) (%) 1999.
213 PRy 219 733 [31 Bendat, Julius S and Allan G. Piersol: “Engineering
1.89 1.97 1.98 1.97 Applications of Correlation and Spectral Analysis”,
g;; ggé ggé gg; [4] Felber, A.J.: “Development of a Hybrid Bridge
- : : : Evaluation System”, Ph.D. thesis, Department of
Civil Engineering, University of British Columbia,
Vancouver, Canada, 1993.
Cenclusions [5] Vold, H., Kundrat, J., Rocklin, G. T., Russel. R.:
”A Multi-Input Modal Estimation Algorithm For
In this paper a new frequency domain identification Mini-Computer”, SAE Technical Paper Series, No.
technique denoted Frequency Dontain Decomposition 820194, 1982
(FDD) has been introduced.
[6] Ibrahim, S. R. & Milkulcik, E. C., "The
The technique is based on decomposing the power spectral Experimental Determination of Vibration Test
density function matrix using the Singular Value Parameters From Time Responses”, The Shock and
Decomposition. It has been shown that this decomposes the Vibration Bulletin, Vol. 46, No. 5, 1976, pp. 187-
spectral response into a set of single degree of freedom 196
systems, each corresponding to one individual mode.
71 Juang, J.-N. & Pappa, R. S.,” An Eigensystem
The technique has been illustrated on a simulation example Realization Algorithm For Modal Parameter
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the present technique is able to estimate close modes with Guidance. Control and Dynamics, Vol. 8, No. 5,
high accuracy and that the technique is not sensitive to 1985, pp. 620-627
noise.
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In the case of close modes that are not orthogonal. the mode
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However, if the other mode is not dominating a any

frequency, other ways of estimating the mode shape for such [9]
amode must be introduced,

The technique has been applied successfully to several civil
engineering cases, Brincker et al. [11], [12] and to several [10]
cases of identification in mechanical engineering where the

“Subspace Identification for Linear Systems™,
Kluwer Academic Publishers, 1996

Bendat, Julius $ and Allan G. Piersol: “Random
Data, Analysis and Measurement Procedures”, John
Wiley & Sons, 1986.

Andersen, P., R, Brincker, and P.H. Kirkegaard:
“Theory of Covariance Equivalent ARMAV
Models of Civil Engineering Structures”, Proc of



(11]

[12]

[13]

[14]

{15]

the 14™ International Modal Analysis Conference,
IMAC, Dearborn, 1996.

Brincker, R, P. Andersen: “Ambient Response
Analysis of the Heritage Court Tower Building
Structure”, Proc. of the 18" International Modal
analysis Conference, San Antonio, Texas, February
7-10, 2000.

Brincker, R., J. Frandsen and P. Andersen:
“Ambient Response Analysis of the Great Belt
Bridge”, Proc. of the 18™ International Modal
analysis Conference, San Antonio, Texas, February
7-10, 2000.

Brincker, R., P. Andersen and Nis Maller.:
“Output-Only Modal Testing of a Car Body
Bubiject to Engine Excitation”, Proc. of the 18"
International Modal analysis Conference, San
Antonio, Texas, February 7-10, 2000,

Brincker, R., P. Andersen and Nis Mgller: “An
Indicator for Separation of Structural and Harmonic
Modes in Output-Only Modal Testing”, Proc. of
the 18™ International Modal analysis Conference.
San Antonio, Texas, February 7-10, 2000.

Mpiller, N, R. Brincker and P. Andersen: “Modal
Extraction on a Diesel Engine in Operation”, Proc.
of the 18™ International Modal analysis
Conference, San Antonio, Texas, February 7-10,
2000.



