Ambient Response Analysis
of the Great Belt Bridge

Rune Brincker
Department of Building Technology and Structural Engineering
Aalborg University
Sonhgaardsholmsvej 57, DK 9000, Aalborg, Denmark

Jannette B. Frandsen
Department of Engineering Science
University of Oxford
Parks Road, Oxford OX1 3PJ, England

Palle Andersen
Structural Vibration Solutions ApS
NOVI Science Park,
Niels Jernes Vej 10, DK 9220 Aalborg East, Denmark

Abstract

In this paper an ambient response analysis of the Great
Belt Bridge is presented. The Great Belt Bridge is one of
the Iargest suspension bridges in the world, and the
analysis was carried out in order to investigate the
possibilities of estimating reliable damping values from
the ambient response due to traffic and wind. The
response data were analysed using three different
techniques: a non-parametric technique based on
Frequency Domain Decomposition (FDD), a parametric
technique working on the raw data in time domain, a
data driven Stechastic Subspace Identification (SSI)
algorithm and finally a covariance driven SSI technique.
In a small frequency band from 0.17-0.30 Hz 5 modes
were identified, and the quality of the modal estimates
were evaluated based on MAC values on the mode
shapes estimates and standard deviations on damping
estimates.

Nomenclature

At sampling time step
Y, response vector

f natural frequency

S damping ratio

o, ¥ mode shape matrices
Introduction

When modal properties are to be identified from large
structures, usually the possibilities to control and measure

the loading on the structure is rather limited. This is
especially true for very large bridges where the excitation of
the low frequency modes by artificial loading is difficult.
Further, since the bridge is carrying heavy traffic 24 hours a
day, the ambient response will in any case be a dominating
signal. Thus, in stead of trying to control the loading and
reduce the response from ambient loads, in this case the
ambient response was used as data for an output only modal
identification.

Several real cases of ambient response analysis can be found
in Ventura and Horyna [1], and a comparison between
different techniques for modal identification from ambient
responses can by found in Andersen et al. [2].

The main purpose of this investigation was to make a survey
on the possibilities of estimating the total damping from
ambient response measurements only. The investigation was
carried out on the Great Belt bridge in Denmark, a
suspension bridge with a closed box-girder and a free span
of 1624m. Earlier an investigation of the structural damping
of the same bridge has been carried out, Jensen et al. [3].
However, in this earlier investigation only one technique
was used for identification.

The purpose of this mvestigation was to make an
independent identification of the bridge using different
identification techniques and to compare the different
techniques evaluating the quality of the modal identificatior

Long-span bridge design is dominated by aeroelastic
stability considerations involving a complex interaction
between bluff-body unsteady fluid dynamics and structural
response. The structural damping and the damping
introduced by the flow around the structure plays a central



role. The classical wind tunnel tests can only be used as a
guide-line since the high Reynolds number present in
full-scale cannot be reproduced at model-scale level.

Thus, the long term goal of this investigation is to establish a
procedure for modal identification of large bridges so that
reliable damping estimates can be obtained and the influence
from the wind can be accurately obtained. The aim is to
establish the relation between the damping and the wind
speed so that the amplitudes of wind induced oscillations
can be more accurately obtained.

In this particular case four time series were acquired, all at
the same day. During the measurements, the wind direction
and speed was recorded to be almost constant , a North-
West wind at about 6 mv/s. Since the wind was not close to
be perpendicular to the bridge line no severe vortex-induced
oscillations was expected, and thus, the damping values
presented in this paper are assumed to be representative for
traffic induced vibrations.

The four test cases, in the following denoted test4, test5,
test6 and test7, were performed using the same transducer
set-up. Transducers were 8 DC accelerometers placed in
three cross sections along the main bridge deck , see Figure
1. The measurement cross sections were placed between the
two main pylons approximately one third of the distance
between the pylons from the west pylon. The transducers
had a sensitivity of 40 V/g, and the signals were sampled at
approximately 200 Hz using a 16 bit data acquisition
system. Afterwards, the signals were decimated by 125 to a
sampling frequency of 1.58 Hz corresponding to a Nyquist
frequency of 0.791 Hz. The length of decimated time series
was 6000 data per channel for test4, test5 and test7 and
12000 data points per channel for test6. This corresponds to
about 1 hour measurements for the short time series and
about 2 hours for the long time series.

The response data were analysed using three different
techniques: a non-parametric technique based on Frequency
Domain Decomposition (FDD), a parametric technique
working on the raw data in time domain, a data driven
Stochastic Subspace Identification (SSI) algorithm, and
finally a covariance driven SSI algorithm.

Because of difficulties using parametric models on data with
a large number of modes, the data were band-pass filtered to
concentrate on the frequency region 0.17-0.30 Hz.

The results from the three techniques were compared and
validated against each other.

Principle of Frequency Domain Decomposition

(FDD)

The Frequency Domain Decomposition (FDD) technique is
an extension of the classical frequency domain approach
often referred to as the Basic Frequency Domain (BFD)
technique, or the peak picking technique. The classical
approach is based on simple signal processing using the
Discrete Fourier Transform, and is using the fact, that well
separated modes can be estimated directly from the power
spectral density matrix at the peak. ’

In the FDD techmque first the spectral matrix is formed
from the measured outputs using simple signal processing
by discrete Fourier Transform (DFT). However, instead of
using the spectral density matrix directly like in the classical
approach, the spectral matrix is decomposed at every
frequency line using Singular Value Decomposition (SVD).
By doing so the spectral matrix is decomposed into a set of
auto spectral density functions, each corresponding to a
single degree of freedom (SDOF) system. This is exactly
true in the case where the loading is white noise, the
structure is lightly damped, and where the mode shapes of
close modes are geometrically orthogonal. If these
assumptions are not satisfied, the decomposition into SDOF
systems is an approximation, but still the results are
significantly more accurate than the results of the classical
approach

The singular vectors in the SVD are used as estimates of the
mode shape vectors, and the natural frequencies are
estimated by taking each individual SDOF auto spectral
density function back to time domain by inverse DFT. The
frequency and the damping were simply estimated from the
crossing times and the logarithmic decrement of the
corresponding SDOF auto correlation function.

The theoretical background of the FDD technique is
described in Brincker et al. [4].

Results of Frequency Domain Decomposition
(FDD)

Figure 2 shows the singular value decomposition of the
spectral density matrix of test4. In this identification, the
measurements had 6 channels of response data. Thus, the
decomposition results in 6 singular values.

As it appears, more than 15 modes seems to be present in
the frequency range from 0-0.7 Hz. Further, most of the
modes seems to be well separated, but around 0.28 Hz two
close modes are present. For the band-pass filtered data, 5
modes are clearly visible including the mentioned set of
close modes around 0.28 Hz.

All 5 modes were eastly identified using the FDD technique
for all test cases. The results are given in tables 1-4. In all
cases the spectral density function were estimated using



Figure 1. Transducer set-up. Distances between the threc
cross sections are approximately 70 m
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Figure 2. Singular value decomposition of the spectral
density matrix of the test4, top: unfiltered data, bottom:
band-pass filtered data.

1024 point FFT except in the case of test6 were the spectral
densities were also calculated using 2048 point FFT. The
corresponding values of the damping are given in brackets
in table 3. Modec shapes for test4 are shown in Figure 5.

Principle of Stochastic Subspace Identification
(SSI)

Stachastic Subspace Identification (SSI) is a class of
techniques that are all formulated and solved using state
space formulations of the form

x,,; = Ax, +w,

Y =Cx, +v,

where X, is the Kalman sequences that in SSI is found by a

so-called orthogonal projection technique, Overschee and
De Moor [6]. Next step is to solve the regression problem

for the matrices A and C , and for the residual sequences
W, and v, . Finally, in order to complete a full covariance
equivalent model in discrete time, the Kalman gain matrix
K is estimated to yicld

X, =4x, +Ke,

Y: :Cir +é

It can be shown, Brincker and Andersen [5], that by
performing a modal decomposition of the A matrix as

A =V, [ and introducing a new state vector

z, =V 7%, the equation can also be written as

I = D“f]zr + e,

y, =Pz, +e

where Lu,] is a diagonal matrix holding the discrete poles

related to the continuos time poles A, by g, = exp(A,Af),

and where the matrix @ is holding the left hand mode
shapes (physical, scaled mode shapes) and the matrix Yis
holding the right hand mode shapes (non-physical mode
shapes). The right hand mode shapes are also referred to as
the initial modal amplitudes, Juang {7].

The specific technique used in this investigation is the
Principal Component algorithm. see Overschee and De
Moor [6].



Results of Stochastic Subspace Identification (SSI)

For each test case a set of models with different model
orders were identified and the stabilisation diagram was
established. Figure 3 shows the stabilisation diagram for the
data driven SSI for testd.

For the covariance driven SSI, the covariance function were
estimated using the Random Decrement technique which
provides unbiased and low variance covariance function
estimates, Asmussen [5]. Figure 4 shows the stabilisation
diagram for the covariance driven SSI for test4.

As it appears, SSI has some problems handling this case.
Even though the five peaks appear quite clearly in both
spectral densities and decomposed spectral densities, the
modes are not clearty indicated in the stabilisation diagrams,
This problem was even more severe before band-pass
filtering the signals. Further, there docs not seem to be much
difference between the modal indication (stabilisation) for
the data driven and the covariance driven SSI. For the case
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Figur 3. Stabilisation diagram of test4 {zoomed). Data
driven SSL
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Figur 4. Stabilisation diagram of test4 (zoomed).
Covariance driven SSI.

of test4 shown in Figure 3 and 4 it might look like the data
driven SSI stabilisc better, However, resulis for the other
cases does not support this conclusion.

The 5 modes were not easily identified using the §S1
technique on the four test cases, however, identification was
possible in the most cases. The results are given in tables 1-
4. Mode shapes for test4 are shown in Figure 5,

Evaluation of results

The quality of the two SSI techniques were evaluated
comparing the estimated mode shapes with the mode shape
estimates from FDD. The mode shapes were compared
using the MAC values, sce tables 1-4. As it appears from the
results, the difference between the data driven and the
covariance driven SSI is rather sma]l. but it seems like the
data driven SSI in general has a little more reliable mode
shape estimates than the covariance driven. SST has severe
problems identifying the fifth mode. For test4 the
identification of the fifth mode failed for both the data
driven and the covariance driven SSI.

Since the FDD technique is based on traditional spectral
estimation that introduces leakage bias, it was expected that
the quality of the damping estimates from FDD would be
rather poor compared to estimates obtained by a parametric
model like SSI. This expectation was reinforced by the fact
that damping values were small, typically smaller than 1 %.

The quality of the damping estimates can be evaluated by
calculating the standard deviation over the four test cases.
Results are given in table 5. As it appears from the results,
the FDD technigue has much less uncertainty on the
damping estimates than the SSI technique. If the mean of the
standard deviation over the modes is considered, FDD is
clearly better than SSI. if the maximum standard deviation is
considered, FDD is clearly better than SSI, and finally if the
minimum standard deviation is considered. FDD is as good
SSI The somewhat surprising conclusion is that FDD is to
prefer from SSI when accurate damping estimates are of
importance. However, in the cases where 1024 data point
were used in the FFT, results indicatc that the FDID damping
estimates were biased by leakage. This can be concluded
comparing the results for the 1024 data point FFT with the
results of the 2048 data point FFT. As it appears, the 2048
data poini FFT had smaller damping estimaies in all cases.

Conclusions

The signals were band-pass filtered and five modes were
identified in a narrow frequency range from 0.17-0.29 Hz.
Two of the five mode were close modes.



There was not much difference between the results of the
data driven and the covariance driven SSI technique. In
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Table 1. Test 4. Comparison of identification algorithms
Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC
Decomposition Identification (SS1) FDD- Identification (SSI) FDD-
(FDD) Data Driven (DD) SSI(DD) | Covariance Driven {(CD) SSI{CD)
Frequency | Damping Frequency Damping Frequency Damping,
(Hz) (%o) (Hz) (%) (Hz) (%0)
0.174 1.09 0.172 0.42 0.998 0.174 1.04 0.998
0.208 0.38 0.208 0.83 0.999 0.197 0.34 0.555
0.238 0.54 0.236 6.42 0.959 0.236 4.23 0,955
0.281 0.79 0.281 0.50 0.970 0.283 1.31 0.880
0.289 0.40 0.291 4.99 0.323 0.301 1.50 0.204




Table 2. Test 5. Comparison of identification algorithms

Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC
Decomposition Identification (SSI) FDD- Identification (SSI) FDD-
{FDD) Data Driven (DD) SSIKDD) | Covariance Driven (CD) SSICDy
Frequency | Damping Frequency Damping Frequency Damping

(Hz) (%) (Hz) (%) (Hz) (%)

0.174 (.83 0.172 (.27 0.998 0.174 0.63 0.999
0.208 (.68 0.209 0.72 0.998 0.207 0.33 0.995
0.239 0.54 0.237 4.66 0.991 0.238 1.29 0.991
0.279 0.44 0.281 0.33 0.998 .280 0.24 0,982
0.288 0.45 0.288 0.12 0.983 0.289 0.49 0.933
Table 3. Test 6. Comparison of identification algorithms (FDD results in brackets is 2048 point FFT)
Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC
Decomposition Identification (SSI) FDD- Identification (SSI} FDD-
{FDD) Data Driven (DD) SSIDD) | Covariance Driven (CD) SSI{CD)
Frequency | Damping Frequency Damping Frequency Damping

(Hz) (%) (Hz) (%) (Hz) (%)

0.174 0.64 (0.51y | 0.174 0.32 0.996 0.174 0.46 0.998
0.207 0.38(0.29) | 0.208 0.32 0.999 0.208 0.20 0.997
0.239 0.52(0.38) | 0.234 3.94 0.987 0.238 1.63 0.996
0.281 1.16 (0.57) | 0.281 0.56 0.994 0.280 0.15 0.979
0.288 0.32(0.23) | 0.288 (.08 0.995 0.288 0.18 0.809
Table 4. Test 7. Comparison of identification algorithms

Frequency Domain Stochastic Subspace MAC Stochastic Subspace MAC
Decomposition Identification (SSI) FDD- 1dentification (SSI) FDD-
{FDD) Data Driven (DD) SSIKDD) | Covariance Driven (CD) SSICD)
Frequency | Damping Frequency Damping Frequency Damping

(Hz) (%) (tHz) (%) (Hz) (%)

0.174 0.93 0.174 0.82 0.993 0.174 0.67 0.998
0.207 0.37 0.208 0.34 1.000 0.208 0.30 0.999
0.238 0.39 0.234 5.54 0.965 0.235 0.83 0.985
0.279 0.37 0.280 0.48 0.995 0.282 0.57 0.975
0.288 0.40 0.287 (.14 0.887 0.291 0.61 0.952

Table 5. Values of mean and standard deviation of the damping ratio over the four test cases.

Mode Frequency Domain Stochastic Subspace Stochastic Subspace
Decompaosition (FDD) Identification (SST) Identification (8S81)
Data Driven (DD) Covariance Driven (CID)
Mean value | Standard Mean value | Standard Mean value | Standard
(%) deviation (%) deviation (%) Deviation
(%) (%) (%)
1 0.87 0.19 0.46 0.25 0.70 0.24
2 0.50 0.15 0.55 0.26 0.29 0.06
3 0.50 0.07 5.14 1.08 2.00 1.53
4 0.69 0.36 0.47 0.10 0.57 (.53
3 0.39 0.05 1.33 244 0.70 0.70
Mean 0.16 0.83 061
Minimum 0.07 0.10 0.06
Maximum 0.36 2.44 1.53




EDD Mode Shape - mode # 1, f = 0.17391 Hz, z = 1.0871 %
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Figure 5: Mode shapes for the first three modes. Lefl: Frequency Domain Decomposition (FDD). Right: Stochastic Subspace

Identification (SSI), data driven.



