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ABSTRACT 
 The paper presents a general method for modal 
decomposition of time series of structural vibration response. The 
method is applied to measurements of vortex induced vibrations of 
deep water drilling risers in operation. The modal decomposition 
method is based on a subspace system identification algorithm that 
is driven by the measured riser and rig response data only. Thus no 
a priori FEM model of the riser system is required for 
determination of the mode shape matrix that is used in the modal 
decomposition of the measured response time series. A combined 
deterministic-stochastic model of the riser-rig dynamic system is 
identified from response measured at fixed positions along the riser 
and from measurements of the rig motions. The rig motions are 
considered as a deterministic input to the dynamic system. The 
linear riser dynamics caused by the rig motions can therefore be 
separated from the riser vibrations caused by other unmeasured 
(or in this context by definition: stochastic) excitation sources, such 
as e.g. vortex shedding. 
 
It is well known that hydrodynamic damping is significant for 
deepwater risers. Such damping is not classical in the sense of 
Caughey. The dynamic system model must therefore allow for 
general damping properties. This implies complex eigenvectors of 
the associated damped eigenvalue problem, and complex modal 
coordinates of the decoupled system. It will be shown how the 
elements of the complex eigenvectors can be interpreted in terms of 
magnitudes and phase angles of the corresponding mode shapes. 
The complex modal coordinate time series are interpreted as modal 
amplitude and modal phase angle. The modal decomposition 
method is illustrated by application to a few sets of measured 
response time series from a deep-water drilling riser. 
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INTRODUCTION 
The present trend in offshore petroleum exploration is towards deeper 
waters. The exploration drilling are very often carried out from a 
dynamically positioned floating vessel and the production solutions are 
also often based on a floating vessel. Riser systems provide the 
connection between the drilling or production vessel and the wellhead. 

Thus, the riser system integrity is vital for successful drilling and 
production. A major source of uncertainty with respect to design and 
operation of deep-water risers is the occurrence of Vortex induced 
Vibrations. As a part of the Norwegian Deep-water Programme (NDP), 
a drilling riser vibration-monitoring programme has been executed. The 
main objective of the monitoring programme was to establish a 
database that could be used for calibration of available VIV design 
software. A secondary objective was to gather data that could be used 
to enhance the understanding of VIV in deep-water risers. 
 
MODELLING RISER DYNAMICS FOR SYSTEM 
IDENTIFICATION - PROBLEM FORMULATION 
Interpretation of measured structural response requires an adequate 
mathematical model of the system. It is well known that hydrodynamic 
forces heavily influence the dynamic behaviour of risers. Especially the 
damping and the inertia contributions caused by the surrounding water 
may be as important as the structural damping and mass of the riser 
structure itself. Deep-water risers can therefore be regarded as neither 
lightly damped nor classically damped structural systems. Thus, the 
physical modal properties of deep-water risers cannot be explained by 
the theory of classical normal modes in the sense of Caughey (1960). 
Then it appears logical to base the interpretation of the measured 
resonant response on a more general theory of structural vibrations, 
namely the so-called “damped mode approach”. This theory allows 
more general mass, damping and stiffness properties than normally 
applied. The existence of such theory has been known for long, see e.g. 
Foss (1956), Hurty and Rubinstein (1964), Meirovitch (1967) and 
(1996), Langen and Sigbjörnsson (1979). 
 
Measuring the dynamic response of deep-water drilling risers in 
operation is very challenging. The instrumentation must be attached to 
the riser during the riser assembly phase. This is a critical phase in the 
operation of the riser. Thus, in order to minimise time delays the 
instrumentation must be robust and simple. As few extra components as 
possible should be introduced into the riser assembly. The interference 
from non-drilling crew should also be minimised. Robit Technology, a 
Corrocean subsidiary, provides a solution that has been applied to a 
number of risers in the past couple of years. The equipment consist of 
independent motion measurement units which provides motion sensors, 
AD conversion, a fixed amount of data storage and battery capacity 
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built into one high-pressure resistant titanium cylinder. Each unit has a 
clock, which can be synchronised initially with the clock of other units. 
However, since the clocks are independent there will be different drift 
for each of the clocks over the operation period. This drift leads to 
imperfect time synchronisation between the sampling performed by the 
different measuring devices. Assuming linear drift in time, an 
approximate correction may be performed. However, some phase 
distortion will remain in the measured response time histories. 
 
Thus both the physical system that yields the response and the actual 
measurements of the riser response requires a general linearised 
dynamic model to be applied. Response measurements should therefore 
in general be processed and interpreted as coming from a system that 
permits spatial phase variations. 
 
THE SECOND ORDER MODEL 
The dynamic response of a marine riser can generally be modelled by a 
second order differential equation of dimension ( )nn × as follows: 

(1) ),,,()()()( tttt sss qqqfqKqqM &&&&&& =++ ζ  

where qq &&& , and q are vectors of generalised acceleration, velocity and 

displacement, respectively. ),,,( tqqqf &&&  is the forcing function. 

ss ζ,M  and sK  are the mass, damping and stiffness matrices of the 
riser structure.  
 
Consider a structure partly submerged in a fluid (e.g. water) and 
exposed to loading caused by fluid motions (e.g. waves and/or current) 
or the structure moving in the fluid as is the case for a riser connected 
to a vessel that moves due to wave and wind action. Then the forcing 
function ),,,( tqqqf &&&  can be decomposed into a sum of elements being 
proportional to the acceleration, velocity and displacement respectively 
and a residual which contain all the other load components, also any 
nonlinear effects: 

(2) )()()()()()()( ttttttt rsss ffffqKqqM qqq +++=++ &&&&&& ζ  

The load component )(trf  contains known (i.e. measured and thereby 

deterministic) excitation, ( )td
rf , such as e.g. vessel motions, and 

unknown (stochastic) excitation, ( )ts
rf , such as wave and current 

action. 
 
The first three elements of the right hand side of (2) are transferred to 
the left-hand side of the equation and expressed in terms of the 
acceleration, velocity and displacement respectively 

(3) 
( ) ( ) ( )
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( )thM and ( )thζ are the hydrodynamic mass (inertia), and damping 

coefficients, while ( )thK is an added stiffness due to hydrostatic 
effects. The hydrodynamic parts of the mass and damping matrices and 
the hydrostatic part of the stiffness matrix are generally not time 
invariant. Therefore the general equation will contain time varying 
coefficient matrices. However, it is reasonable to assume that they may 
be regarded as approximately constant. This is at least reasonable in a 
time scale related to the time characteristics of the system, i.e. natural 
periods. When the system during Vortex Induced Vibrations locks on to 
a natural period, it may be modelled with constant coefficient matrices. 
If the situation is inspected closely it may be seen that hydrodynamic 

added mass and damping at any given point on the riser usually show 
considerable variability over each cycle and between cycles 
presumably in the same state. However, the nearly harmonic response 
that is usually seen justifies the use of averaged quantities. Presumably 
the variability in hydrodynamic added mass and damping that is seen 
over short sections and time spans averages out over longer riser 
lengths and times. This is also justified by the fact that the system must 
have almost constant or very slowly varying coefficient matrices during 
the VIV lock-in period in order to have distinct natural frequencies. 
Then we obtain the following second-order differential equation  

(4) )()()()()( ttttt s
r

d
r fuBKqqqM +=++ &&& ζ  

d
rB  is an input influence matrix characterising the locations and type 

of deterministic inputs )(tu . 
 
The response of the dynamic system can be measured by e.g. 
accelerometers, inclinometers, rotation rate sensors, strain gages etc. A 
matrix output equation can thus be written as: 

(5) )()()()()( ttttt mqva eqCqCqCy +++= &&&  

where the matrices va CC , and qC are output influence matrices for 

acceleration, velocity and displacement respectively. )(tme  is white 
measurement noise. The output influence matrices describe the 
relationship between the vectors qqq ,, &&&  and the measurement vector 
y . Thus, a measured output may be a combination of e.g. acceleration 
and rotation. This is in fact the case for accelerations measured with 
linear accelerometers mounted perpendicular to the riser axis. For 
motions with a long period, the influence of the acceleration of gravity 
(the ” ( )θ⋅sing ” component) may exceed the lateral acceleration in 
magnitude. This needs special attention during analysis of the 
measurements. 
 
A STATE-SPACE MODEL 
Identification of the system parameters KM ,,ζ , which in modal form 
are given by natural frequencies, modal damping ratios and mode 
shapes are not straightforward. The system identification methods 
applied in experimental modal analysis today are to a large extent based 
on a reformulation of the second order model (4) into a first order state-
space description. See e.g. Juang (1994). State space formulations have 
been applied for the purpose of system identification of offshore 
structures, see e.g. Hansteen (1987), Hoen (1991), Prevosto et al. 
(1991). Procedures for transformation of the second order model to 
state- space form can be found in textbooks on structural dynamics or 
system identification theory, see e.g. Hurty and Rubinstein (1963), 
Juang (1994) or Meirovitch (1996). 
 
It is always possible to represent a linear system in state space form  

(6) 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tttt

tttt

vDuCxy

wBuAxx

++=

++=&
  

With reference to (4) and (5) the following definitions apply 
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A  is the state transition matrix 
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







−

= − d
rBM

0
B 1   is the deterministic input matrix 

[ ]ζ11 , −− −−= MCCKMCCC avaq  is the output matrix 

d
ra BMCD 1−=  is the deterministic feed-through matrix 

( ) ( ) ( )ttt m
d
ra ewBMCv += −1  is the state measurement noise 

( ) ( )






−

= − t
t s

rfM
0

w 1  is the state process noise 

In case the state process noise ( )tw  is not white, a state-space model 
can model the noise to yield a residual noise process that is white for 
practical purposes. This will add noise states to the state vector and 
corresponding terms to the matrices CB,A, . See e.g. Hoen (1991) for 
details. 
 
A frequently applied alternative formulation to (6) in discrete time is 
the innovation form, see e.g. Ljung (1987) 

(7) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )tttt

tttt g

euDxCy

eKuBxAx

++=

++=+1
  

where gK is the Kalman gain matrix and the innovation is defined as 

( ) ( ) ( ) ( ){ }1E −−= tttt yyye  where { }oE is the expectation operator. 

The system matrices DC,B,A ,  are the discrete time equivalents of 
the matrices DCB,A, ,  of (6). The innovation formulation is 
particularly useful for estimating the state vector time series, since it is 
known to yield optimal estimates of the state vector. See e.g. Maybeck  
(1979). 
 
THE STATE SPACE MODAL FORM 
The state space models (6) or (7) can be decoupled into a set of 2n 
uncoupled equations applying the eigenvalue decomposition of the state 
transition matrix 

(8) ΛΦΨ =AT  

where 
Λ  is the diagonal matrix of eigenvalues of A 

ΦΨ,  is the left and right eigenvector matrices of A,  ( 1−= ΦΨT ) 
 
Thus we obtain the following modal state space description by applying 
(8) to e.g. (6) 

(9) 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tttt

tttt TT

vDuηCy

wBuηη

++=

++=

Φ

ΨΨΛ&
  

where 

(10) ( ) ( ) ( )ttt T xxη 1−== ΦΨ  

is the complex vector of state modal coordinates. 
 
It is well known that the solutions to (6), (7) and (9) are composed of a 
homogeneous part associated with the initial conditions, and a steady 
state solution given by the future deterministic input and process noise. 

The solution to the homogeneous part is useful for interpretation of 
resonant vibrations such as e.g. lock-in Vortex Induced Vibrations. 
 
The eigenvector matrix of the state space model can be partitioned as 

(11) 







=

ΛΦ
Φ

Φ
q

q  

where qΦ  is the components of the eigenvectors corresponding to the 
generalised displacements. 
 
INTERPRETATION OF STATE SPACE 
MODAL RESPONSE 
The solution to the free vibration problem associated with (6) is known 
to be 

(12) ( ) ( ) ( )0
0 tet tt ax −= ΛΦ  

where ( )0ta  is a vector of complex coefficients or initial modal 

weights. Setting 0tt =  and premultiplying (12) with TΨ on both sides 
yields 

(13) ( ) ( ) ( )000 ttt T ηxa == Ψ  

We see that the complex modal weights are nothing but the state modal 
coordinates. In matrix form the free vibration state response is given 

(14) ( ) ( ) ( ) 00 ,0 tttet Ttt ≥= − xx ΨΦ Λ  

Assume for simplicity of notation that Λ  contains only complex 
eigenvalues, which then will appear in pairs as ( )*, jj λλ , where the 
asterisk denote complex conjugate. The free vibration response can 
then be expressed as the following sum over n components 

(15) 
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Consider now the polar form of the complex numbers in (15) 
 

 (16) 
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Substituting for (16) in (15) results in the following expression for 
element k of the free vibration state response vector 
 

(17) ( ) ( ) ( ) ( ) ( )( )∑
=

−α− θ+β+−ωφη=
n

j
jkjj

tt
kjjk tttettx j

1
000 cos2 0  

The quantities that appear in (17) interpret as follows: 
 

jω  the damped natural frequency of mode  j 

jjj ζω=α  the damping coefficient, with jζ  the modal damping 
ratio of mode j 
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kjφ  the magnitude of component k of right state eigenvector j 

kjβ  the phase of component k of right state eigenvector j 

( )02 tjη the initial modal amplitude of state mode j corresponding to 

the eigenvalue pair ( )*, jj λλ  and the initial condition x(t0) 

( )0tjθ  the initial modal phase of state mode j corresponding to the 

eigenvalue pair ( )*, jj λλ  and the initial condition x(t0) 
 
Thus, a generally damped structural system decouples into n real state 
modes, each with 2n components corresponding to generalised 
displacements and velocities. The modes are defined by means of the 
complex eigenvectors of the system containing magnitudes and phase 
angles. The appearance of spatially varying phase angles admits 
travelling wave behaviour of the mode shape as the oscillation proceeds 
through a cycle. This is a major and important difference from the 
spatially synchronous oscillation found for classically damped systems. 
 
We also see that the modal decomposition of a measured response 
vector time series y(t) can be obtained from estimates of the state-space 
system matrices and the corresponding state vector time series. 
 
CIRCULAR SYMMETRIC STRUCTURE MODES 
Circular symmetric structural systems such as e.g. risers do not have 
distinct principal axes. Therefore it is the hydrodynamic properties such 
as added mass and hydrodynamic damping that will determine the 
geometrical orientation of the riser mode shapes. The displacements 
and motions of the riser are typically given as three Cartesian 
coordinates 321 xxx  with e.g. 3x  directed along the riser longitudinal 

axis. The column eigenvector jφ can thus be split into three parts, 

jjj ,3,2,1 ,, φφφ , in each of the orthogonal Cartesian directions. At an 
arbitrary position k of the riser, consider the free vibration displacement 
response at time 0tt ≥ caused by an initial state applied at time 0tt =  

for the 1x -direction 

(18) ( ) ( )( ) ( )00,1,1,1 cos2 tttetx jjkjj
t

kjqkj
j ηθ+β+ωφ= α−  

The subscript 1 has been introduced on the local magnitudes and phase 
angles of the state mode shape indicating that the component is 
measured along the 1x -axis. Analogous relations may be obtained by 

exchanging subscript 1 with 2 or 3 in (18). The motions in the 3x  
direction of a riser are often negligible compared to the motions in the 

21, xx  directions. Thus the resulting free vibration modal displacement 
response for a riser is obtained as 

(19) 
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+=
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j

kjkjkj

j

 

We see that the free vibration modal displacement response at an 
arbitrary position on the riser is the product of the initial modal 
amplitude, an exponentially decaying function and an ellipse. The 
exponentially decaying function is defined by the modal damping. The 
initial mode shape magnitudes, the damped circular eigenfrequency, the 
initial modal phase and the mode shape phase components define the 
ellipse. A similar expression is obtained for rotational degrees of 
freedom. The damping properties of the system, i.e. the damping 

coupling between the degrees-of-freedom in 1x and 2x directions, 
determine the ratio between the major axis and the minor axis of the 
ellipse. Therefore, the ellipse will degenerate to a line for systems with 
no damping coupling between the degrees-of-freedom in 1x and 2x  
directions. 
 
The phase angle between a modal motion at two different positions k 
and l along the riser longitudinal axes is given as 

(20) ( )ljkjjklj tt ,,, −ω=ϕ  

where kjt ,  and ljt , are the points in time relative to a reference time 

0,jt  where the modal response of mode j reach maximum amplitude at 
the positions k and l respectively. This phase angle depends on the 
damping coupling between the degrees-of-freedom at position k and l. 
 
A MEASURE ON MODE CONTRIBUTION 
The state modal coordinate time series, (10), represent measures on 
mode contribution to the response from sample to sample. However, for 
identification purpose it is preferable to have a single number that yield 
similar information as can be obtained from the statistics of the state 
modal coordinate time series. Modal norms seem to be good candidates 
for such measures. Gawronski (1998) gives a comprehensive treatment 
of modal norms for system identification, model reduction and sensor 
placement purposes for stable systems. It can be shown, however, that 
results similar to the ones given by Gawronski also exist for non-stable 
systems in finite time intervals. This is due to certain properties of the 
analytical modal representation of Gramians as shown by Hoen (1991). 
Here we will only reproduce the results important for the present 
application. 
 
Modal norms are related to system norms. System norms serve as a 
measure of system “size”. The modal norm applied in the following is 
the Hankel norm. The Hankel norm of a system is a measure of the 
effect of the past input on the future output of the system. That is the 
energy stored in, and subsequently retrieved from the system. Thus the 
modal Hankel norm is a measure of the energy stored in the vibration of 
a mode. The modal Hankel norm is defined as follows for the present 
application 

(20) 22

2

4
1

ii
ii

t

i cke ii

ωζ
−

≅γ
ωζ−

 

where 
 

2ik  the Euclidean norm of the i’th row of the Kalman gain matrix of 

the stochastic model 

2ic  the Euclidean norm of the i’th column of the modal equivalent 

output matrix of the stochastic model 
iζ  the estimated damping of mode i of the model 

iω  the estimated circular frequency  of mode i of the model 
 
The modal equivalent output matrix is the linear combination of three 
modal output matrices related to generalised displacements, velocities 
and accelerations as follows 

(21) mamvmqm CCCC ++=  

where 
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 ,,,1 ΩΦΦΩΦ qamaqvmvqqmq CCCCCC === −  

Ω  is the diagonal matrix of natural circular frequencies and qΦ  is the 
part of the right state space eigenvector matrix that corresponds to the 
generalised displacements, see (11). 
 
The Hankel norm of a system is also the largest Hankel singular value 
of the system. Therefore it is close relations between the singular values 
of a system and the Hankel modal norms of the system. This property is 
useful for determination of model order in system identification. 
 
IDENTIFICATION OF COMBINED 
DETERMINISTIC STOCHASTIC SYSTEMS 
During the last decades considerable effort has been put into 
construction of algorithms for estimation of the parameters in MIMO 
(multi-input multi-output) state-space systems. In particular the so-
called subspace methods, also known as projection methods, have 
drawn considerable interest. Over the years several authors have 
presented methods; for the deterministic case, the stochastic case and 
recently also for the combined case with both deterministic and 
stochastic input. See e.g. Ho and Kalman (1963), Kung (1978), 
Hoen (1991), Prevosto et al (1991), Juang (1994), Van Overschee and 
De Moor (1996), Ljung and McKelvey (1996), Di Ruscio (1997). 
 
The basic idea behind subspace methods is to first estimate the state 
vector time series x(t), and then by linear least squares procedures 
estimate the system matrices g,,,, KDCBA . An estimate of the state 
vector time series may be constructed directly from the response 
measurements or from the corresponding covariance functions by 
application of standard linear algebra decompositions such as QR 
and/or SVD. See e.g. Golub and Van Loan (1996) for details on QR 
and SVD decompositions. From these decompositions, it is also 
possible to obtain the system matrices directly without actually 
computing the state vector time series. 
 
Some of the algorithms presented in the literature are designed for 
impulse response type data, e.g. the ERA algorithm of NASA, see e.g. 
Juang (1994). Other algorithms can only handle stochastic systems and 
other again works for deterministic systems. However, the latest 
developments have led to a unification of the approaches and the 
construction of algorithms that handle the combined deterministic-
stochastic estimation problem and each of them as well. The trend is 
also towards algorithms that work directly on the data avoiding the 
sometimes numerically ill conditioned covariance estimation step. See 
e.g. Di Ruscio (1997). Ljung and McKelvey (1996) give a relatively 
easy accessible and instructive introduction to sub-space system 
identification methods. 
 
The DSR (Deterministic Stochastic Realisation) algorithm of Di Ruscio 
has some features that are very attractive for application to measured 
structural response. An estimate of the state vector time series can be 
obtained directly from standard linear algebra decompositions (QR and 
SVD) of a data matrix constructed from the input and output vector 
time series. The Kalman gain matrix is also computed directly from 
these decompositions without solving any matrix equations like e.g. 
Ricatti or Lyapunov equations. The state vector time series may 
therefore also be estimated applying a standard Kalman filter approach 
as an alternative to the direct estimation. We shall not go into details on 
the algorithm. The interested reader should consult Di Ruscio (1997) 
for a complete treatment. 
 

We have performed some initial tests on riser response data applying 
the DSR algorithm, the N4SID algorithm of Van Overschee and De 
Moor (1996), the CVA algorithm of Larimore (1990) and the CBHM 
method given by Hoen (1991). These tests showed that the DSR 
algorithm generally performed better for identification of model order 
and system parameters than the other three algorithms. This confirms 
the results of Di Ruscio (1997) performed on quite other types of 
dynamic data. 
 
MODEL ORDER SELECTION AND 
EVALUATION 
Identification of models from measured data requires some judgement 
by the user. The number of excited modes is unknown and therefore 
also the systems order. A model estimated from the data will typically 
contain states related to excited structural modes, states related to the 
coloured excitation process and states related to noise and nonlinearites. 
A state that is related to an excited structural mode should be almost 
insensitive to increase in model order as long as the model order are not 
too far from the order of the true system.  Thus if the estimates of the 
modal parameters corresponding to a state, i.e. the natural frequency, 
modal damping ratio and mode shape, stabilise with respect to 
increasing model order it is reason to consider this state as belonging to 
a true system mode. 
 
Then we need a measure on mode coherence from one model order to 
the next. The inner product between the estimate of a mode for two 
different model orders is such a coherence measure. After 
normalisation of the mode vectors to unit length the inner product 
between the estimate of a mode at one model order and an estimate of 
the same mode at another model order should be close to unity. 
Estimates of corresponding modes obtained for different model orders 
that yield coherence not close to unity are either poorly excited system 
modes or noise modes. Each vibration mode can thus be characterised 
by frequency, mode coherence and damping ratio. 
 
A stabilisation diagram visualising frequency location, mode coherence 
and damping level can be constructed as follows. The abscissa axis 
represents frequency and the ordinate mode coherence, while a colour 
may represent damping level. A vertical bar of length given by the 
mode coherence is plotted at the frequency location given by the 
corresponding frequency estimate. The colour of the bar can be used to 
represent the level of the damping ratio estimate. Starting with the 
model of lowest order several such diagrams can be stacked on top of 
each other and a mode stabilisation diagram is obtained. However, this 
diagram will not give information on the energy related to each of the 
excited modes. Similar stabilisation diagrams that yield this information 
can be constructed. Instead of scaling the length of the bars according 
to the mode coherence, the bar length can be scaled according to the 
relative size of the modal norms obtained for each model order. The bar 
length of the mode with largest modal norm for a particular model 
order is set to unity and the other bars are scaled accordingly. 
 
An identification session thus consists of the following steps: 
1. Determine a suitable model order and locate the excited structural 

modes by inspection of frequency stability diagrams. 
2. Estimate the mode shapes and the corresponding modal amplitude 

time series for the chosen model order. 
 
APPLICATION TO MEASURED RESPONSE 
Some of the features of the method will be illustrated. Some typical 
riser response time series that demonstrate the use of the method and 
the results that may be obtained have been chosen. 
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The measurements have been performed on a drilling riser operating at 
a water depth between 1000m and 1500m. The external diameter of the 
riser including buoyancy elements are approximately 1 m and the 
average mass including content around 900 kg/m. The top tension was 
approximately 4.2 MN and the bottom tension was estimated to 
approximately 2.6 MN. The riser was equipped with five independent 
sensor units. In addition one sensor unit was located on the rig. The 
sensor layout is illustrated in Figure 1.  

Topside Acc xr, yr, zr

VIV Monitoring Instrumentation

 Acc x, y / Rot. x, y

 Acc. x, y

 Acc x, y

 Acc x, y / Rot. x, y

Acc x, y

 0.28 L

 0.9 L

 0.46 L

 0.7 L

 0.015 L

 L

 
Figure 1 Sensor Positions 

Only two of the sensor units were equipped with rotation rate meters. 
Thus it is only possible to separate the gravity-induced dynamic 
acceleration from the pure lateral dynamic acceleration at these two 
positions. At the lower sensor position, the motion is almost pure 
rotation. At this position, the accelerometer works as a dynamic 
inclinometer. The co-located rotation rate meter is therefore redundant. 
 
Since the system identification works with the measured data, the 
coordinate system will be that of the accelerometers. This is fixed to the 
riser and moves with the riser as it vibrate. It is also some uncertainty 
related to the exact orientation of each sensor package relative to the 
others. The main reason is that the riser may twist slightly around its 
longitudinal axis. The results obtained from the system identification 
must therefore be interpreted with this in mind. Particularly this is 
important for interpretation of the mode shape estimates. Ideally one 
would like to compare the estimated mode shapes with the 
displacement modes of e.g. an FEM model of the riser. However, in the 
present case the comparison must be with mode shapes expressed in the 
sensor coordinates. I.e. each mode is expressed as a linear combination 
between the lateral acceleration mode and the rotation mode scaled 
with the acceleration of gravity as indicated in (22) 

(22) ( )θθ φ+φω−=φ−φ=φ gg 2
qam  

Another problem that arises with respect to comparison to riser FEM 
models is that the software applied for analysis of riser systems today 
only gives estimates of the modes of the undamped system. I.e. the 
influence from hydrodynamic damping is neglected. 
 
Analysis of two cases with measurements will be presented. The 
accelerometer signals indicate one dominating mode with a low noise 
level for Case 1 while Case 2 apparently has two clear modes, but with 
a high-level coloured noise superimposed, see figure 2 and figure 7. 
The modal norm frequency stability diagram clearly identifies one 
mode for Case 1 and two modes for Case 2, see figure 3 and figure 9 
respectively. The modal coherence frequency stability diagrams 
indicates two clear modes for both cases. 

Table 1 Estimated Modal Parameters 

Modal amplitude [m]Case Period 
[s] 

Freq.  
[Hz] 

Damping 
ratio 

Modal 
Norm Mean COV 

29.5 0.0339 0.0021 490 000 0.21 0.13 1 22.8 0.0439 0.0054 88 000 0.05 0.56 
37.8 0.0264 0.0055 280 000 0.41 0.39 2 27.7 0.0361 0.0059 150 000 0.21 0.29 

 
Table 1 shows the modal parameters estimated for the selected models 
of the two cases. We see that there is significant difference between the 
cases for the estimated natural period for both mode 1 and mode 2. The 
difference is largest for mode 1, which for Case 1 has a natural period 
that is approximately 78% of the natural period estimated for this mode 
in Case 2. This difference is far larger than what can be explained by 
difference in riser tension and mud weight between the two cases. Thus, 
there is reason to believe that the hydrodynamic added mass must be 
different for the two cases with a lower added mass for Case 1. We also 
see that the damping estimate for mode 1 in Case 1 is less than 50% of 
the damping level estimated for mode 1 in Case 2. From the modal 
norms we see that mode 1 is far more energetic for Case 1 than for Case 
2. Mode 2 has almost insignificant energy for Case 1, but has an energy 
level of the same order of size as mode 1 for Case 2. 
 
The estimated displacement modal amplitude time series for Case 1, see 
figure 5, show that the displacement response level of mode 1 is almost 
constant throughout the time series. This is also reflected in the 
Coefficient of Variation (COV) given in table 1. This indicates that the 
response may be of a steady state forced resonant type, like e.g. a lock-
in VIV condition. Mode 2 starts out with a low response level which 
increases somewhat and then return back to the low level towards the 
end of the time series. We see that the COV for this mode is much 
larger than for mode 1.  
 
The displacement modal amplitudes estimated for Case 2, see figure 11, 
show a much larger variability for mode 1 than found in Case 1. Mode 
2 of Case 2 seems to be closer to a steady state response than mode 1, 
but not comparable to what was found for mode 1 in Case 1. 
 
The mode shape estimates are shown in figure 6 and figure 7 for case 1 
and in figure 12 and figure 13 for Case 2. We have compared the 
estimated mode shape magnitudes and phase angles to the 
corresponding mode shape magnitudes and phase angles computed by 
an undamped FEM model of the riser. The somewhat strange looking 
mode shape magnitude is obtained because we express the FEM mode 
shapes in the coordinate system of the accelerometers. Especially low 
frequency modes are significantly influenced by gravity as shown by 
eq. (22). Remember also that mode shape phase angles are relative. 
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For Case 1 it is relatively good agreement between the undamped FEM 
mode 1 and the estimates at the sensor positions except for the phase 
angle at the upper sensor level. For mode 2 the difference between the 
FEM mode and the estimated mode are larger both with respect to 
amplitude and phase angles. 
 
For Case 2 it is good agreement between the magnitude of undamped 
FEM mode 1 and the estimate of mode 1 at the three lower sensor 
positions. At the two upper positions the deviation between the 
magnitude of the FEM mode and the estimated mode is significant. The 
phase angles differences are larger than for Case1. For mode 2 the 
agreement between the estimated mode and the FEM mode are better 
than for Case 1. 
 
CONCLUSIONS 
We have presented a modelling approach for the dynamic behaviour of 
deep-water risers that account for the influence of damping on the 
system dynamics. The modelling framework has been applied to obtain 
the modal decomposition of forced resonant vibrations of damped 
dynamic systems. The modal decomposition has been interpreted in 
terms of natural frequencies/periods, modal damping ratios, mode 
shapes with spatially varying phase angles and time series of complex 
state modal coordinates. The latter gives real valued time series of 
modal amplitudes and modal phase angles. 
 
We have demonstrated the application of the modal decomposition 
method to full-scale measurements of riser acceleration response by 
using the DSR subspace system identification algorithm for estimation 
of realisations of the system matrices and the state vector time series. 
 
The presented method seem to be a powerful tool for interpreting 
measured response from structural systems that respond dynamically to 
known and/or unknown excitation. In particular we expect that 
systematic application of the presented method to the available 
databases of measured riser VIV response may lead to a significantly 
enhanced understanding of the VIV response of risers. 
 
We are presently investigating how to extend the method to obtain 
estimates of the unknown modal load from the decoupled system. 
 
The method may also be adapted and implemented for online riser VIV 
monitoring purposes. 
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Figure 2 Raw FFT spectral estimates, Case 1 
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Figure 3 Modal norm frequency stability diagram, Case 1 
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Figure 4 Mode coherence frequency stability diagram, Case 1 

 
 

0 200 400 600 800 1000
0

0.5

1

1.5
05091112 Order:30  - LS

Time [s]

E
st

im
at

ed
 d

is
pl

ac
em

en
t m

od
al

 a
m

pl
itu

de
s

ODS/Mode: 29.48s
ODS/Mode: 22.78s

 
Figure 5 Estimated displacement modal amplitude [m], Case 1 
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Figure 6 Comparison of FEM mode 1 with identified mode at 29 s 
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Figure 7 Comparison of FEM mode 2 with identified mode at 23 s 
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Figure 8 Raw FFT spectral estimates, Case 2 
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Figure 9 Modal norm frequency stability diagram, Case 2 
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Figure 10 Mode coherence frequency stability diagram, Case 2 
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Figure 11 Estimated displacement modal amplitude, Case 2 
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Figure 12 Comparison of FEM mode 1 with identified mode at 38 s 
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Figure 13 Comparison of FEM mode 2 with identified mode at 28 s 
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