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ABSTRACT

In this papers a new approach for estimation of ARMA
models is developed. Based on an analytical transforma-
tion between the modal parameters and the ARMA pa-
rameters, it is explained how the optimization can be per-
Jormed vn the modal domain. 115 explained how The prac-
tical estimation problems can be significantly reduced by
optimizing on a reduced set of parameters in the modal
domain.

NOMENCLATURE
At sampling time step
N response vector
A,,B, ARMA coefficient matrices
e prediction error
A,B,C state space matrices
X state vector
I unity matrix
q shift operator
H(.) transfer function
A% elgenvector matrix
iy X poles
P, T mode shape matrices
b1, Ui mode shape vectors
R; residue matrix
f,¢ natural frequency, damping
INTRODUCTION

In prediction error methods (PEM), Ljung [1987], the
measured response 1s modeled by fitting directly to the
time series by minimizing the error, t.e. the difference
between the measured and the modeled time series. The
vector ARMA structure is the simplest possible covari-

ance equivalent mode] of linear structural systems formu-
lated in discrete time, Andersen et al. [1996], and thus,
it is an obvious choice in cases where an optimal estima-
tion of modal parameters is needed. However, since the
prediction error can only be minimized using non-linear
optimization, and since practical applications often in-
volve many response channels and many modes, the [arge
set of parameters needed to be estimated causes severe
problems in calculation time, computer memory manage-
ment and convergence.

In this paper, a simple way of reducing the number of pa-
rameters 1s considered by performing the optimization on
a subset of the model parameters in modal domain. The
modal set is then transformed to ARMA domain where
the prediction errors are obtained and minimized. First,
however, the problems of calibration of ARMA models is
briefly explained.

Assume p channels of measurements simultaneously sam-
pled with the time step At and ordered in the vector y;.
The subscript ¢ denotes discrete time, i.e. real time is
obtained by multiplying ¢ by the time step At.

A corresponding vector ARMA model with np poles is
given by, Andersen [1997]

Ye+tAy: 1+ +ALyin = e+Breio1+..+Be,
1)

where all A;, B; are real p x p matrices, and e; 1s a vec-
tor of white noise sequences driving system to response
with the sequence y;. Using PEM estimation, the ARMA
model is estimated by predicting the response §; from lin-
ear regression on the past values of the measurements y;
and noise ey, 1.e. the estimator is, Andersen [1997]

Ve = —Aryia—. —Anyi o +Bre 1+ 4+ Brei, (2)



Now, assuming, that the measurements can be modeled
as given by Equation (1), the differences between the pre-
dictions and the measurements are given by the noise se-
quence e;, and thus, using least squares estimation, the
model is calibrated by minimizing some norm of the co-
variance matrix of the prediction error e;. Because of the
recursive nature of the equation, the minimization must
be solved using non-linear optimization. As it appears,
the A; matrices, denoted as the Auto Regressive (AR)
parameters, and the B; matrices, denoted as the Moving
Average (MA) parameters, both contain np® real scalar
parameters. This corresponds to a total of 2np® real num-
bers that has to be estimated when calibrating the model.
if y; is the response of a structure, then poles appear in
complex conjugate pairs, and thus, in general np must be
a multiplum of two, and the number of structural modes
1s then np/2.

For a realistic case, the number of parameters might be so
large, that problems estimating the parameters by non-
linear optimization becomes time consuming. For a typ-
ical number of channels, say 16 channels, and for n = 4,
the number of modes appearing in complex conjugate
pairs (including noise modes) becomes 32, and the to-
tal number of parameters is 2048. This is a large set
of parameters to be estimated, and this results in well
known problems with calculation time, computer memory
management and convergence. Thus, when using ARMA
models for modal extraction, a simple way of reducing the
number of parameters is needed.

Performing the optimization in the ARMA domain, i.e.
using the A;, B; matrices as the parameter set, there is
no simple way of reducing the number of parameters. The
A; matrices are directly associated with the mode shapes
and poles. The np? AR parameters correspond exactly
to np/2 natural frequencies, damping ratios and scaled
mode shapes. However, any element of the AR coefficient
matrices influences all modal parameters, and thus, the
AR parameter set cannot be reduced. The MA param-
eters B; take care of the covariance equivalence and the
noise modeling, however, at the same time these param-
eters have modal relation. They define the residues, and
again, any element in the MA coefficient matrices is in-
fluencing all residues. The conclusion is, that the ARMA
set of parameters does not allow a reduction of the pa-
rameter set to the modal parameters of interest.

However, if a transformation to and from the modal do-
main can be formulated, the optimization can be per-
formed in modal domain, and thus, the parameter set
can be reduced to the modal parameters of interest.

FROM ARMA TO MODAL DOMAIN

One of the difficulties of the ARMA model as formulated
mm Equation (1) is the high and changing order of the
difference equation. This difficulty is removed by using a

stochastic state space representation, Kailath [1980] and
Aoki [1990]

Axt + Bet
Cxi + e

(3)
(4)

X1 =

yr =

where x, is the state vector whose elements depends on
the actual realization. An example of a realization of a
vector ARMA model is given in Andersen and Brincker
[1999, 1].

Now, introducing the shift operator ¢ defined by ¢x;, =
X¢41, the Equation (3) can now be written

Iqxt = AXg + Bet (5)

or

(Ig— A)x; = Be, (6)

substituting this result for x; into Equation (4) yields

y: = C(Ig— A) 'Be, + e, (7)
where I 1s the identity matrix. From this result the trans-
fer function of the ARMA model, given by y; = H(q)e,
can be obtained

C(Ig-A)"'B+1

H(g) = (8)

the next step is to decompose the transfer function. This
is done by a modal decomposition of the A matrix

A = Vv (9)

where V is the eigenvector matrix, and [y;] is a diago-
nal matrix holding the eigenvalues. Substituting this into
Equation (8) we get

C(Ig — V{m]V-H)'B +1
CV[(g— ) ' ]VTIB+1
= ®[(¢g-pm) e +I

H(q)

il

il

(10)



From this equation it appears, that ® = [¢), ¢2,..] is the
matrix holding the left mode shapes ¢; of the system as
column vectors and similarly ¥ = [%T, %I .7 is holding
the right mode shapes 1; as row vectors. Note that both
& and ¥7 are complex valued p x np matrices.

The left mode shapes is the observable part and corre-

spond to the physical mode shapes. Both the left mode
shapes and the right mode shapes define the residues.

The eigenvalues p are in fact the discrete poles of the
system, this is easily recognized doing a partial fractional
expansion of the transfer function

ap
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=1 4= Hi

H(qg) =

+1 (11)

where R; is the residue matrix for ’th mode, a complex
valued p x p matrix of rank one.

This solution defines the parameter set in the modal do-
main. If one wants to optimize on all parameters associ-
ated with one mode, the parameter set is the correspond-
ing pole ¢ and the left and the right mode shape ¢, 4. If
the noise modeling is excluded, only the pole and the left
mode shape ¢ is included, and finally, if only the natural
frequency and the damping is needed, the set is just the
pole u. Note, that the discrete pole u is related to the
pole A in continuous time by

po= A

(12)

and that the relation between the continuos time pole and
the corresponding natural frequency f and the damping
ratio ¢ 1s given by

A=

—2mfC £ 2mf\/1— (2

(13)

This transformation explains the physical meaning of the
ARMA model, it relates the AR and MA matrices to the
structural system under consideration. Doing optimiza-
tion however, this transformation does not help much.
It defines the parameter set in modal domain, but does
not provide the right tool for the optimization algorithm.
Optimizing on the parameter set in modal domain, the
inverse transformation is needed

FROM MODAL TO ARMA DOMAIN

Starting in modal domain we have the mode shape ma-
trices @, ¥ and the diagonal eigenvalue matrix [g;]. The
modal set constitutes the transfer function as decribed
by Equation (10). Comparing with Equation (8), which
defines the transfer function in the state spate matrices
A.B,C it is clear that the following state space realiza-
tion exists

(tilx: + Pey
®Px; +e

Xt+1 -

In this formulation, the state vector x is transformed by
the eigenvector matrix V. The formulation can be con-
verted to the ARMA format by comparing solutions in
modal and ARMA domain.

The first step is to compare the solutions of the homoge-
nous equations. A solution to Equations (14) and (15)
for e, = 0 1s easily obtained by recursion

Y = ®[u]'x (16)

Substituting this solution into the corresponding solution
to the homogenous part of the ARMA model given by
Equation (1) and dividing on both sides by x; yields the
following equation

Q[.ui]n+A1§[.ui]n_l_|‘---+An—-1(§[,ui]+An¢ =0 (17)

which can be solved for the AR coefficient. matrices

(A, (18)

‘I’[. i)
L]

Without any proof the readers attention is drawn to the
fact that in this solution the AR matrices always comes
out as p x p real valued matrices.

The MA part is obtained by considering the general solu-
tion to Equations (14) and (15) found by recursive sub-
stitution



l§
Vo = ®[wl'xi+ Y ®u] T Weiyy 1+ e (19)

ji=1

By stacking the general solution for y; to y+_n41 together
with the observation equation (15) the following set of
equations 1s obtained

[ Yt ] [ @™
Yi-1 B[p)" !
= . Xt—n +
Yi-nt1 ®[p;]
L Yt-n L @ J
rT L )2 B[l T e
0 . @3 T S[u" 2| | ey
¥+ (20)
0 I Q\I’ €t_n+1
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Now, multiplying this equation from left by the matrix
[TA; As... A, ] then the left-hand side equals the Auto
Regressive part of Equation (1). According to Equation
(17) the first part of the right-hand side of the equation
vanish, and the last part then defines the Moving Average
part of Equation (1), thus

[I B, B, B,] =
1 B[] 2T B[]
0 ... B[ 3C B[] 2
[TA, Az... A, ] 21)
0 .. I T
L0 ... 0 1 J

Now the basis for optimization in modal domain is estab-
lished. From the full set of modal parameters a subset is
chosen for optimization. From the full set of parameters
the ARMA matrices are obtained from the above equa-
tions, and the parameters in the optimization set can then
in every optimization step be changed in order to mini-
mize the prediction error. A technique of minimizing the
prediction error is described in Andersen and Brincker
[1999, 1].

OUTLINE OF ESTIMATION ALGORITHM

The idea of the algorithm is already explained above, how-
ever a short outline of the algorithm is given in the fol-
lowing.

The estimation procedure is divided in to three major
steps: Initialization, minimization and uncertainty esti-
mation.

1. Initialization. Step 1.a: In this step an initial estimate
for the ARMA model is provided. Any initial estimate
can be used that provide the needed modal information
(poles and left and right mode shapes). Step 1.5: In this
step the modal parameters in the optimization parameter
set 1s selected.

2. Minimization by recursion. Step 2.a: The first step
(not to be performed the first time) is to detect if the op-
timization parameter vector has caused a significant de-
crease of the measure of the prediction errors. To do this,
the full modal parameter set is transformed to ARMA
domain, the prediction erros are determined and the mea-
sure of the prediction errors is calculated. If there is no
significant change of this measure step 2 is terminated.
Step 2.b: Based on the modal parameter optimization set
the search gradient is constructed. Step 2.c: Based on the
search gradient the modal parameter optimization set is
updated. Continue the recursion by repeating from Step
2.a.

3. Uncertainty estimation. Using PEM estimation al-
lows for estimation of the covariance matrix of the opti-
mization parameter set, Ljung [1987] and Andersen and
Brincker [1999, 1]. Assuming that the subset of parame-
ters consist of all uncertain parameters in the model, the
covariance matrix of the parameter subset can be esti-
mated. When using traditional ARMA model calibration,
where the calibration is performed in ARMA domain, in
many cases numerical difficulties or additional uncertain-
ties are introduced by transforming the parameter covari-
ance matrix from ARMA domain to modal domain. In
this case however, where the parameter vector contain
the modal parameters, the modal parameter covariance
matrix 1s estimated directly

CONCLUSIONS

A new technique for PEM estimation of ARMA mod-
els for structural ambient responses has been introduced.
Based on analytical solutions for the transformation be-
tween ARMA domain and modal domain, the optimiza-
tion 1s performed in modal domain. The parameter set



contain the modal parameters, or if only some of the
modal parameters are of interest, a subset of the modal
parameters. The set of modal parameters consists of the
poles (natural frequencies and damping ratios), the left
mode shapes (scaled mode shapes) and the right mode
shapes. The technique allows for a reduction of the pa-
rameter set to a minimum set consisting only of the modal
narameters af inferest  This stronglv reduces the well
known problems often observed in practice concerning
long estimation times, memory management problems and
convergence problems. The technique also allows for a
more reliable and more accurate estimation of the modal
parameter covariance matrix. Applications of the tech-
nique can be found in Andersen et al. [1999, 2] and
Peeters et al. [1999, 3].
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