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ABSTRACT

In this paper it is shown how to estimate the modal parameters as well
as their uncertainties using the prediction error method of a dynamic
system on the basis of output measurements only. The estimation
scheme is assessed by means of a simulation study. As a part of the
introduction, an example is given showing how the uncertainty
estimates can be used in applications such as damage detection.

NOMENCLATURE

(1) System response vector process

) Discrete-time Gaussian white noise vector process
Sampling interval

Auto-Regressive coefticient matrix

Moving Average coefficient matrix

State matrix

Stochastic input matrix

Observation matrix

Matrix of eigenvectors of the state matrix

Matrix of mode shapes

Natural eigenfrequencies

Damping ratios

Diagonal matrix containing distinct eigenvalues
Vector of stacked parameters of an ARMAV model
Hessian matrix of a parameter vector 0
Covariance matrix of 6 based on a estimate éN
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1 INTRODUCTION

The estimation of the dynamic properties of linear and time-invariant
systems has been applied for various reasons in a variety of engineer-
ing fields. This extraction of dynamic information is known as modal
analysis since the dynamics is usually represented by the so-called
modal parameters. However, modal analysis is usually confined to an
investigation of the expected values of the modal parameters. In such
an analysis they have often been treated as deterministic parameters
instead of a realization of some stochastic variables. In applications
where the change of the modal parameters is of interest, the extra
information about the quality of the estimates is essential. Such an
application could e.g. be damage detection, where a damage is
believed to be detected if one or more of the estimated modal parame-
ters change significantly with time, and if this change cannot be
explained by e.g. a change of extra mass on a structure or changes in
the ambient environment. However, the problem is how to define a
significant change of a modal parameter. This problem can be solved
in a statistical sense if the estimates are treated as realizations of
stochastic variables, see Andersen et al. [1] and Kirkegaard et al. [2].
Different statistical tests exist for testing whether two realizations with
a certain probability are outcomes of the same stochastic variables. If,
with a significant confidence, it can be rejected that two realizations
are outcomes of the same stochastic variable the it can be concluded
that a significant change has occurred.

In this paper, it is the intention to show how to obtain information
about the uncertainties of estimated modal parameters. This can be
accomplished by assuming the estimated modal parameters to be
realizations of Gaussian stochastic variables. The modal parameter
estimates are then assumed to correspond to the mean values of these
stochastic variables. It will be shown how to estimate these mean
values by calibration of a linear and time-invariant discrete-time
parametric model to time series data. The associated covariance matrix
can then be estimated afterwards. Two methods for estimation of the
covariance matrix will be presented. Finally, the performance of these
methods will is tested by a simulation study.

|.1 The ARMAV Model

The estimation of modal parameters is based on the assumption that
the dynamic system shows linear and time-invariant behaviour, The
dynamic behaviour of an ambient excited system is usually modelled
by a second-order differential equation system, see e.g. Andersen [3]

My(t)y+Cy(t)+Ky(t) = w(t) , w(t)e NID(O,W) (1)

M, C and K are the mass, viscous damping and stiffness matrices. yiz)
is the displacement vector. w(f) is continuous-time Gaussian white
noise with zero mean and an intensity described by the matrix W. In
Andersen [3] and Andersen et al. [4], it is shown how to represent such
a system by a discrete-time Anto-Regressive Moving Average Vector
(ARMAYV) model. Assume that the continuous-time system is observed
at discrete time instances k using a sampling interval 7. If the
continuous-time system consists of np/2 degrees of freedom (DOF) and
if p displacements are observed and external measurement noise is
present, a model having covariance equivalent system response at atl
discrete time steps £,=kT is of the form

YU +Ay( )+ r Ay ) =

e(r,)+Ce(t, ) +..+C els, ), e(1,)ENID(0,A) (2)

This model consists of an nth order auto-regressive matrix polynomial,
and a moving average matrix polynomial of similar order, where
n=np/p. All coefficient matrices of the polynomials are of the
dimension p x p. The discrete-time displacement vector y(,) is of
dimension p x 1. The discrete-time Gaussian white noise e(z,) has the
same dimension. Further, e(s,) has zero mean and a second-order
moment described be the covariance matrix A. This particular model
is referred to as an ARMAV(n,n) model. It can be represented
equivalently by a stochastic state space system of the form

x(1,,)=Ax(1)+Be(t,) . e(t,)eNIDO,A)
y(t,) =Cx(t)+e(r) 3)

where x(£) an np x | dimensional state vector. The state matrix A, the
stochastic input matrix B and the observation matrix C are defined as,
see Andersen [3]
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The relalion between the auto-regressive system matrices and the state
space matrices A and € are given by
A, A, . A =-CA"O ()

(5)
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where O{n) 1s the reduced observability matrix, see Andersen et al. []]
1.2 Modal Parameter Estimation
The modal parameters can be extracted by modal decomposing A.as

A=Pu¥' . up=diagip,)} (6)

The modal decomposition is described by the 1 eigenvectors, which
are the columns of the matrix ¥, and by the rp cigenvalues p, located
in the diagonal of the matrix p, The eigenvectors ¥, are constructed
trom the mode shapes @, and the eigenvalues U, as

q)l v np
H q) - pnchnn

- 11 i A (7)
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The mode shapes, natural eigenfrequencies and damping ratios of the
continuous-time system can therefore be extracted as

* —Zn‘r:}:il:t._rﬂlffj T
(I)j =CY,, {wan b = e( f 4 ) (8)

where j=1. ... s Since all modes are assumed underdamped it implies
that 5 = ap/2.

1.3 The Prediction Error Method

The parameler cstimates, based on N samples, and returned in BN can
be obtained as the global minimum point of the criterion function

N
V,48) = det %Z £(1,,0)87(1,,8) (9)
k=1

The model parameter vector 8 is determined so that the prediction

error £(£,,0) =y{1, ) - ¥( t,14,_,;0) is as small as possible. y{ t e, 1:0)
15 the one-step ahead predicted system response. The parameter vector
£ can be separated into the two m x | parameter vectors 8 and 6€
which are organised in the following way

6 = L‘ol([A1 ) A”D‘ 0c = Cc)[([C1

8 = col([®* o))

. Cn]) (10)

where col means stacking of all columns of the argument matrix. The
total number of adjustable parameters in 0 is as such 2m = 2np’. The
predictor of the ARMAYV (r.1) model is defined as

Flede (10)=-A(Biylr, d-.~A Oy, )+

C(®eir,_,. 8+~ C Bt , @) (11

This relation reveals that the predictor of the ARMAYV model is non-
linear, since the prediction errors themselves depend on the parameter
vector 6. This implies that an iterative minimization procedure such as
the following Gauss-Newlon search scheme has to be applied.

A
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N
RO)I=3 P00, ()¢7(1,.0)
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The dimensions of the Hessian matrix R(6) and the gradient vector
F(O)are 2m x 2m and 2m x |, respectively, n. is a bisection constant
that adjusts the step size. §r(1,,0) is the gradient of the predictor (11),
i.e. the derivative of {11) with respect to each of the adjustable
parameters of the ARMAV model. At cach time step this gradient
lorms an 2m x p dimensional matrix, The estimate of the parameters
of the ARMAY madel can as such be calculated by supplying an initial
parameter estimate. On the basis ol this the prediction errors can be
caleulated, the matrix R(8) and the vector F(0) can be calculated. An
updated estimate can then be caleulated using (11). This methed is
called the prediction error method (PEM) since it is the prediction
errors that are minimized, see Ljung {5]. For Gaussian distributed
prediction errors this method is asymptotically efficient. A standard for
the estimation crrors of such an estimator is provided by the Cramer-
Rao lower bound of variunce, This standard is utilized by the model
parameter covariance matrix of the difference between the true
parameters 60 and eslirng[ed parameters GN as N tends to infinity, i.e.
Pg(8,) = E[(8,- [:]N)(BO- 8,)7]. An estimate of Pyl éN] is provided by
the Hessian matrix as, Andersen {3] and Ljung [5]

Py(B) = R(O) (13)

The covariance of the aulo-regressive parameters depends on the
estimalion uncertainties of the awto-regressive pacameters as well as
the moving average parameters. This is easy to rcalise from the
following block matrix formulation of (13)
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It is therefore important to estimate the moving average correctly.
2 ESTIMATION OF MODAL UNCERTAINTIES

In general, the change of parameterization from a set of auto-regressive
parameters, given in an 2 x | dimensional vector 6, to another set of
physical parameters, given in an » X 1 dimensional vector ¥, can be
performed by a known r-dimensional functional relation x =f(84) .
The functional relationship between the auto-regressive parameters and
the modal parameters is given by the eigenvalue problem followed by
the calculation of the modal parameters. This means that the resulting
functional relation between 8* and x is highly non-lingar, To obtain a
practically applicable approach, k =f{8*) is usually linearized using
a first-order generalized Taylor expunsion at the operating point
(%, ,,BA ). Andersen [4]. This linearization can either be performed as

k=R, -+ (-—af;g}] } 34(8‘“ - G;)
! (15)

- &y - HED(et - )

or as
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For simplicity, it is assumed that all mades s are underdamped and that
mode shapes are normalized with respect to their pth element. There

wiil therefore only be p-1 real and p-1 imaginary mode shape elements.
The elements of &,.can therefore be defined as
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J( 9;) and G(R,,) are Jacobian matrices of partial derivatives
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which should both be evaluated at the operating point (R, \,)
2.1 A Simple but Slow Approach

The covariance mairix P (&,)of the deviation of &, from the true
modal parameters can be estimated by
Ry)= E[ Ku

#2000 P L (B F (B (19)

The estimated covariance matrix P ol 6 v obtained from (13) can then
be inserted instead of PM(B What remains is to calculate the
Jacobian matrix J( BA) The ﬁrz.l step is therefore to define the function

k=161,
Definition 1
O The function & = f(8*} can be divided inta 4 steps as

Step 1. [A| A, . A A”] = assem (04

n-1
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Step 3. (Dj.=C‘Pj. Pu¥'=4

Step 4. K=assem.?([f, g, @

where assem ! is a virtual tunction that should returs the auto-regres-
sive parameters when given the vector 8 as input. assem? is anather
virtual function that should return the vector x when given the modal
parameters as input. O

Analytical calculation of the partial derivatives of this function is in
general impossible even for small model structures, since the calcula-
tions include solution of a scries of cigenvalue problems. However, a
simple way to calculate the Jacobian is by numerical drfterent:atmn
using the central difference thearem. The jth column of g 8 ) can then



be calculated by
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where P is an m % | vector whose elements all are zero except for the
ith clement P; that ceontains & small number This number results in a
small perturbation of the ith element of B . The modal decomposition
and the calculation of the modal paramutcrs must therefore be repeated
Zmn times which makes this a slow approach. A more comprehensive
description of this approach is given in Andersen et al. [3].

1.2 An Adhvanced and Fast Approach

The estimated covariance matrix ﬁK( ®,) can also be obtained in
another way which does not rely on numerical differentiation. The iglfl:.a
is to construct G{(®,) analytically instead of constructing J( 9;\,_}
numerically.

Definition 2

& The function 8" = £ '(x) can be divided into 7 steps as

Step 1. [/I - e CDJ_]:a_s'Sem(K)
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Step 5. 00 =[CT 1CcA)T . carhT Ay

Step 6. [4, A A]=-caroon
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Step 7. 8 = (‘m'([Al . A,J)

where assem is a virtual function that should return the modal
parameters when given the vector x as input. O

From (14} and by using the chain rule the Hessian matrix of the modal
paramcter veetor k and the moving average parameters is given by

Rix,8%) = GHOR

(BYGT(x) GIKIR,(6)

R_(0)GT(k) R (0)
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N

The covariance of the modal parameter vector is therefore obtained
from {13) as

Pix.0)=[R (8) R (BIRLBIR (O] (24)

Essentially, G{&,,) is constructed by partial differentiation of steps 2
1o 6 with respect to the parameters k. which for the jth eigenvalue are
Jin & ©;p and @, The mode shape subscript of the jth mode shape
signifies the real or imaginary parts of the /th row coordinate.

Differentiation of Step 2

The derivatives of step 2 with respect to fj, {;, &, and @, are given
by

O}}’ = 27:ij.( - iyl —cj)
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For simplicity the two parameters f; and J; will be substituted by one
parameter &, The differentiation with respect to £ is therefore
differentiation with respect to f; and ¢,

Differentiation of Step 3

Define 0, as an 1 x m matrix filled with zeros, In the following tins
matrix will be used whenever a zero matrix having dimensions
different from pp x p is needed. The derivatives of ‘P and p with respect
10 &, @y and P, are then given by
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Differentiation of Step 4

For simplicity the real and imaginary parts @, , and @, of the mode
shape coordinates will be replaced by one parameter y,. The deriva-



tives of A with respect to £; and y,, are then given by
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Differentiation of step 5

The derivatives of O(n) with respect to & and ¥y are based the
differentiation of increasing integer powers of A. The diffcrentiation

of A™ Jm =1, 2, ... is given by
m _irim }chA’ | ‘ a " iA”’j ad A’, 1 (,}8)
aE.f i=1 O, fo! i Oxﬂ T
The differentiation of @) then follows straightforwardly
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Differentiation of Step 6

Finally. the differentiation of the auto-regressive parameters with
respect to £; and x, given by
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What remains in order to construcl the derivatives de"faE and
apt /0%,1s to stack the derivatives of the auto-regressive mdtnx
coetfficients obtain in (30). The matrix G{&,) can then be constructed
by looping over all parameters of &, and the covariance in (24) can
be calculated

3 A SIMULATION STUDY

In order to demonstrate the performance of the two approaches and to
compare the computational time necded in each case a simulation
study has been performed. The system response of & Gaussian white
noise cxcited 2 DOF linear system has been simulated 500 times. The
natural eigenfrequencies and the damping ratios of the two modes are
presented in table 1. whereas the mode shape coordinates of the two
modes are presented in table 2,

Moade # f [Hz] ¢ [%]
| 175 0.63
2 2.60 [.08
Table 1. Modal parameters of the simulaled system.
Channcl # 175 [Hz] 2.66 [Hz]
1 1.388+0.003 -0.721+i0.003
) 1 l

Tahle 2. Mode shapes both normalized with respect to channel 2.

Gaussian white noise has been added as external disturbance. The level
of this disturbance is 10% of the standard deviation ol the undisturbed
system response. On the basis of each simulation an ARMAV(2.2}
model has been calibrated using the non-linear prediction error
method. The standard deviations of the modal parameters have then
heen estimated using the two estimation approaches. The standard
deviations obtained from the two approaches are plotted together with
the sampled standard deviations. For simulation number  all cstimates
from I to { have been used to caleulate the sampled standard devia-
tions, Therefore, the associated curve for the first number of simula-
tions will show some transient behaviour.

X107 Maods #1 - Eigenfrequency - Approach 1
=
=x.
c
2
8
=
&
a
B
a
a
E
1
&
a : L 1 ) L L L L L
[H 50 100 150 2060 250 300 350 400 450 500
Simulation Number
x107? Mode #1 - Eigenfrequency - Approach 2
2 T T T T T T T T
T i P
T N
(= T
2
I
5 T -
=]
e
a
2
05 i
a
e L . 1 L L L L L

L
[} 50 100 150 200 250 300 350 400 450 500
Simulalion Number

Figure 1: Estimated and sampled standard deviations of the natural cigenfrequency of
maode (.
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Fzgure 2: Estimated and sampled stundard deviatiens of the natural cigenfrequency of
mode 2

=]
(=]

Mode #3 - Damping Ratio - Approach 1
T

Siandard Deviation [%a]

0.02 ! i : 1 : L L ! L :
o 50 100 150 200 250 300 350 400 450 500

Simulation Number
Mode #1 - Damping Ratio - Approach 2

0.14 T T T T T T
<
£
3
]
a
T
=
F 0
a3
1]

.02 L s r L . L 1 L I

o 50 100 150 200 250 300 350 4Jan 450 500

Simulation Number

Figure 3: Estimated and sampled standard deviations of the damping ratic of mode 1.
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Figure 4: Estimated and sampled standard devintions of the damping ratio of mode 2.
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Figure 5: Estimated and sampled standard deviations of the real part of the mode shape
channel { of mode 1.
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Figure 5: Estimated and sampled standard deviations of the imaginary part of the mode
shape channel | of mode 2.

In this particular case the second approach is 10 times faster than the
first approach. As seen the two approaches work almost equally well,
except for the mode shapes. In this case, the standard deviations of
approach | are very poor. Therefore, the general conclusion is that
approach 2 should be used. since it is the fastest and gives better
estimates of the standard deviations.

6 CONCLUSIONS

The intention of this paper has been to show how madal parameters
and especiaily their estimation errors can be determined. The modal
parameter estimation has been based on calibration of ARMAV
models to time series data using the prediction error method. Two
approaches for estimation of modal uncertainties have been presented.
In each approach, it is the covariance matrix of the modal parameters
that has been estimated. This estimation is based on a first order Taylar
expansion of the functional relationship between the auto-regressive
parameters and the modal parameters. The first approach involves
numerical differentiation of this functional relationship. implementa-
tion of this approach is easy. The second approach involves the
construction of analytical differentiation. Implementation of this
approach is much more difficult. However, the advantage of the second
approach is that an estimate of the covariance matrix is obtained
significanily faster than by the first approach. The performance of the
two approaches has been compared by means of a simulatien study.
This simulation study has shown that the second approach is 10 times
faster and more accurate tfor the mode shapes.
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