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Abstract The Random Decrement (RD) technique
1s a stmple and fast method for estimating the correlation
functions of Gaussian processes. The RD functions are
estimated as an averaging process in the time domain,
which makes the technique sitmple and fast. If the RD
technique s applied to stationary zero mean Gaussian
distribuled processes the RD functions are proportional
to the correlation functions of the processes. If a linear
structure is loaded by Gaussian white noise the modal
paramelers can be extracted from the correlation func-
tions of the response, only. One of the weaknesses of
the RD technique is that no consistent approach to esti-
mate the variance of the RD functions is known. Only
approrimate relations are available, which can only be
used under special conditions. The variance of the RD
functions contains valuable information about the accu-
racy of the estimates. Furthermore, the variance can be
used as basis for a decision about how many time lags
from the RD functions should be used in the modal pa-
rameter extraction procedure. This paper suggesls a new
method for estimating the variance of the RD functions.
The method 1s consistent in the sense that the accuracy
of the approach is not dependent on neither the physical
system nor the actual formulation of the RD technique.

Nomenclature
ai,as, by, by Triggering levels.
Cov[-|1] Covariance of conditional variables.
Dxx, Dxx RD function.
E[]] Conditional mean value.
1,7 Integers.
N Number of triggering points.
px(z) Density function of Y.
Rxx, Ryx  Correlation functions.
x, Ry x  Time derivative of Rxx, Ryx.
t, T Time variables.
Tg(“;) Applied general triggering condition.
T)%(t) Level crossing triggering condition
T)Ig(t) Positive point triggering condition.
Var[-|] Variance of conditional variable.

X, Y Ergodic stochastic processes.
X,Y Time derivative of X and Y.

z Y Realizations/observations of X, ¥
ox Standard deviation of Y.

1 Introduction

The RD technique is a method to transform realizations
of stochastic processes into so-called RD functions. The
technique is usually applied to response measurements
of structures, where the forces are unmeasurable, e.g.
ambient. The basic idea behind the technique is to pick
out time segments and average them each time the rea-
lizations fulfil a given initial condition, denoted a trigge-
ring condition. The estimation process of RD functions
only involves detection of the triggering points and the
averaging of the time segments, which makes the tech-
nique very fast. The technique was introduced by Cole,
see Cole [1], [2], [3] and [4]. He used the technique for
estimation of damping ratios and eigenfrequencies from
single measurements and damage detection based on the
RD functions. The fundamental idea behind extracting
damping ratios and eigenfrequencies is that the RD func-
tions are interpreted as free decays. Ibrahim, see Ibrahim
(6] and [6], extended the theory and the application of
the RD technique by introducing the concept of cross
and auto RD functions in combination with the ITD al-
gorithm. This extension made it possible to estimate
mode shapes from the RD functions from multiple mea-
surements.

In 1982 the theoretical background for the RD tech-
nique was extended by Vandiver et al. [7]. They proved
that the RD function of a zero mean stationary Gaus-
sian distributed stochastic process is proportional to the
auto correlation function. Vandiver et al. also suggested
an approximate method to estimate the variance of RD
functions by assuming that the time segments in the es-
timation process are uncorrelated. The link between the
RD functions and the correlation functions and the ap-
proximate method to predict the variance of RD func-



tions was extended by Brincker et al. [8], [9] and [10] to
include the cross RD functions defined from the theore-
tical general triggering condition. An overview of these
developments and further extension of these results to
an applied general triggering condition can be seen in
Asmussen [11]

The purpose of this paper 1s to investigate the variance
of RD functions and to evaluate the existing method for
estimation of the variance of RD functions. The vari-
ance of RD functions contains important information,
since it can be used in the modal parameter extraction
procedure. The main result is the introduction of a new
approach to predict the variance of the RD functions,
which takes the correlation between the time segments
into account. The new approach is tested by a simula-
tion study of different SDOF and 2DOF systems loaded
by white noise. The variance of the RD functions is
simulated and compared with the prediction of the two
approaches

2 The Random Decrement Tech-
nique

Consider two stationary stochastic processes X(¢) and
Y(t). The auto, Dx x(7), and cross, Dy x(7), RD func-
tions are defined as the mean value of X (t) and Y () on
condition of X (#)

Dxx(T) = E[A'(t%—T)ITX“)] (1)

Dyx(7m) = E[X(t+ 7)[Tx) (2)

where Tx(;) is denoted the triggering condition. The
time variable 7 can be both positive and negative and
the triggering condition defines a set of initial conditions
at time lag zero. For a multiple number of measure-
ments, say n, n different sets of RD functions can be
defined. A set of RD functions is the RD functions esti-
mated on the basis of the triggering condition fulfilled at
the same measurement. For e.g. X(¢) and Y (¢) Dxx,
Dy x, and Dxy, Dyy constitutes two different sets of
RD functions. The total number of RD functions is ex-
actly equal to the total number of correlation functions,
n?,

By assuming that the stochastic processes are ergodic,
the RD functions can be estimated as

Dxx(r) = Z (¢ + )| Teo(r (3)

2=

N
D)'X(T) = Z L+ T IT:,,(t) (4)
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where z(t) and y(t) are realizations of X (t) and Y (1),
which are assumed to be ergodic. The estimates are
unbiased.

Several different triggering conditions exist. They can
all be described from the applied general triggering con-
dition, TX(t), see Asmussen [11]

TSA

X = {a1<X(t)<a2, b1<X(t)<b‘>} (5)

where a3, as, by and by are the triggering levels. If X(¢)
and Y () are stationary zero mean Gaussian distributed
processes the RD functions of the applied general trig-
gering condition are a weighted sum of the correlation
functions and the time derivative of the correlation func-
tions

Dxx(7) = &‘%l.a - _'A;gLT)g (6)
X

R e e I
X

where the triggering levels @ and b are given by the Gaus-
sian density function and the triggering levels a, as, by
and bq, see eq. (5)

f:fxpx(x)d.r P fbiz;i’px(:i‘)di:
Ja px(2)dz Joi Py (3)di

The variance of the estimate of the RD functions can be
predicted by assuming that the time segments used in
the averaging process are uncorrelated. For simplicity
only the variance of the estimated cross RD functions
are given, but the results are easily extended to auto RD
functions by substituting X (¢) with Y (¢) or opposite

. a . 2 ' 2
Var(Dy x (7)) = J (1 - (R;):’;(;)) - (‘ﬁ}"f}) ) +

(8)
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where the constants ki, ko, k3, k4 and ks are given by
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(12)



az b
ky = / / 2%py (2, 8)didz (13)
ap b1

an bg
ks = / / #2py ¢ (2, &)didz (14)
ay bl

Usually in applicatton of the RD technique special trig-
gering conditions are used. The relation between the RD
functions of these conditions and the correlation func-
tions and the approximate solution for the variance of
the estimate of the RD functions can be extracted from
the results for the applied general triggering condition

In this paper the level crossing triggering condition,
T)%(t)’ and the positive point triggering condition, T’f(t)
are considered in the examples, but the theory is valid
from all possible reformulations of the applied general
triggering condition.

Tiq = {X(t)=a} (15)
TEy = {a1 < X(t) < an) (16)

Common to both triggering conditions 1s that the RD
functions become proportional to the correlation func-
tions only. By inserting the triggering levels in eqs. (10)
- (14) the approximate prediction of the variance of the
RD functions can be extracted.

3  Variance Prediction

This section introduces the theory behind a new method
to predict the variance of RD functions, taking the cor-
relation between the time segments into account. To be
general the applied general triggering condition is con-
sidered. The RD functions are estimated as shown in eq.
(4). The applied general triggering condition is reformu-
lated to be a sum of conditions of the particular initial
conditions at the centre of the time segements

N
. 1
Dyx(r) = NE y(t: + 1)
i=1

N
1 . .
Y Zy(ti + 1)|e(t;) = 2, 2(t;) = 2;
i=1

N
1
i=1

The N conditions, Ty, , are never known beforehand but
as soon the RD functions are estimated the conditions
can be established. The resulting RD functions are ex-
actly the same as the RD function estimated using the
true triggering condition, since the time segments in the

averaging process are the same. The variance of Dy x (7)
is calculated from the applied general triggering condi-
tion.

N

. 1
Var[Dyx(r)] = mvar[; u(t: + DTG =
1 S G a Ga
i=1 j=1

The applied general triggering condition is substituted
by the corresponding sum of the particularly formulated
triggering conditions

N

Var[Dyx(7)] = %Var[z y(ti + 7)|Te,] =
; DN
el Z Z Cov[y(t: + 7)|Tei; y(t; + 7)| T2, (19)
i=1j=1

The double summation in eq. (19) 1s reformulated by
applying the actual time difference known from the esti-
mation of the RD function.

Var[f?y)( (r)] = (20)

N
1 .,
el ( E Covly(ti + )| Te,; y(t: + )15

i=1

m Nj
+ Z Z COV[y(ti + T)IT,;‘»; y(t; + JAT + T)]Tx.’+jJ

ji=1t=1

m Nj
+ Y Covylti + GAT + )| Teyy, y(ti + )| T ]

j=li=1

[

where m is the maximum number of time lags between
any triggering points. In eq. (20) some of the N; can
be zero. The general requirement for the number of the
covariance terms at each time step is

N+ 2N + 2Ny + ...+ 2N, = N? (21)

Since the covariance of the conditional processes is inde-
pendent of the chosen initial conditions, T;,, which will
be shown later, eq. (20) can be rewritten as

Var[byx(T)J = (22)



N
1
o ( z_; Cov[Y (t + )T Yt + DITEE)] +

Z N;Cov[Y (t + T){T)?(Tt); Y(t+jAT + T)|T)§(Tt+jAT)] +
j=1

m

> NiCov[Y(t + JAT + )TEH i arys Y+ 7)ITEE)
j=1
where Tg(Tt) is of the same form as the theoretical general
triggering condition.

TGT

X = {X(t) = avX(t) = b}

(23)
The major problem is to calculate the general covariance

G . . G
betw<.3en Y+ T)ITX(T;) and Y (¢ + ]AT + r)|TX(Tt+].AT).
Consider the following two Gaussian distributed stochas-
tic vectors

X, Y+ Y+t +m)T (24)

Xo = [X(8) X(t+t1) X(1) X(t +11)]” (25)
The covariance of X; on condition of X, is calculated
using the standard relation for the covariance function
of conditional Gaussian distributed variables
COV[XllXQ] = Rxlxl - RX1X2RiiXDR§1X3 (26)
The correlation matrices 1 eq. (26) can be calculated
fromegs. (27)- (29) (X and Y are assumed to have zero
mean value)

Ryy(0) Ryy(—t1)

R, [R)’)'(tl) Ryy(0) ] 1)
Rx.x, = (28)

Rxx(0) Rxx(-t1) —Rxx(0) —R'X};(tl)l

Rxx(t1) Rxx(0) —Riyx(t1) —Rsxx(0)
Rx,x, =

Ryx(7) Ryx(r —1t1)

Ryx(t+1t1) Ryx(r)

Ry x (1) Ryx(r —t1)

Ryx(r+t1) Ryx(r)

vx () —Ry x(r —t1)
—Ryx(r+11) —Ryx(r)
—Ryx(7) —Ryx(r—t1)
—Ryx(T+t) —Ryx(r)
The covariance between the Y (¢ + r)|T§(Tt) and Y(t +

nAT + T)|T}(§(Tt+nAT), can be calculated by inserting the
results of eqs. (27) - (29) in eq. (26). The covariance
is taken as the element [1,2] of the 4 x 4 dimensional
covariance matrix Cov[X;|Xs,].

It is important that the only information which should
be available is Ry x(7), Ry x(7) and R x (7). Since the
estimated RD functions are proportional to the correla-
tion functions the information can be obtained by scaling
the RD functions and then calculate the time derivative
and double time derivative of the correlation functions
using numerical differentiation. This is considered to
be a simple and computationally fast requirement. The
disadvantage is that numerical differentiation of the cor-
relation functions demands that the measurements are
oversampled. Otherwise the terms R}, x(7) and R{ ()
should be obtained by differentiating the measurements
and then estimating the corresponding correlation func-
tions using the RD technique. This might be the best
solution if the system is not sufficiently oversampled for
numerical differentiation of the RD functions.

What now remains is somehow to make the number of
the different correlation functions, Ny, Ns, ... , N, a-
vailable. Instead of making some theoretical conside-
ration of the distribution of the triggering points it is
decided to use the sample distribution. This means that
the weighting numbers, Ny, Na, ... , N,,, are obtained
by picking out the time for each triggering point in the
estimation of the RD functions. By sorting the time
differences between the triggering points the weighting
numbers are obtained.

The estimate of the variance of the RD functions involves
the following computational steps.

Sampling the time for each triggering point in estimation
of the RD functions.

Sorting the time differences between the triggering
points.

Numerical (two-time) differentiation of the RD functions
(scaled to be the correlation functions).

Calculating the variance estimate according to eq. (22).

None of these computational steps are extremely time
consuming. The sampling of the time points for each



triggering point is free, since these time pomts are 1den-
tified in the estimation process of the RD functions. In
the following sections the accuracy of the method for e-
stimating the variance of RD functions is investigated by
different simulation studies.

4  Simulation Study

Consider an SDOF system loaded by Gaussian white
naise. The system has an eigenfrequency of f = 1 Hz and
a damping ratio of ¢ = 0.05. The response is sampled
with AT = E'CIU at 5000 tnne points. 30000 simulations of
the response scaled to have unit standard deviation are
performed. For each simulated response an RD function
with 601 points corresponding to —10/f < 7 < 10/f is
calculated using the level crossing triggering condition.
The time points for each triggering point are picked out
and the distribution of the time points is obtained hy
sorting the time differences. The average number of trig-
gering points is 185. Figure 1 shows the average simu-
lated distribution of triggering points together with the
auto correlation function.
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Figure 1: Average distribution of triggering points using
lewel crossing triggering oblained from simulalions and
the theorelical auto correlation function of the system.

1t 1s not correct to assume that the time segments in the
averaging process are uncorrelated, since many trigge-
ring points are within the correlation length, rmax. The
correlation length is defined as |[Rxx(r) < §|, where &
13 a small number, say e.g. 0.1. Based on the 30000
independently estimated RD functions the variance of
the RD function can be calculated. Figure 2 shows the
simulated variance and the variance predicted by the new
method where the theoretical correlation furctions and
the simulated distribution of triggering points have been
used.

Simulated and predicted variance
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Figure 2: The simulated and the predicted variance of the
RD functions using level crossing iriggering a = 2°5zy
and the aulo correlation function of the system. [—
J: Theoretical (simulated) variance of the RD function.
[----]: Predicted variance of the RD function using the
new method.

As seen the new method predicts the variance of the
estimated RD functions extremely well. Instead of using
the simulated distribution of triggering points a single
realization of the distribution of triggering points is used
and instead of the theoretical auto correlation function
the estimated auto correlation function is used, see fig.

3.
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Figure 3: The theoretical and the estimated RD function
using level crossing triggering a = 2°50x and the sample
distribution of the triggering points. [— ]: Theoretical
RD function. [-- .. .J: Estimated RD function.

The variance predicted by the new method and the va-
riance predicted by eq. (9) are shown together with the
simulated variance in fig. 4.



R

" ottt
o L
-10 -5 1] 5 10

T
Figure 4: Simulated and predicted variance of the RD
functions using level crossing iriggering a = 2035, [—
—]: Theoretical (simulated) variance of the RD function.
[+ ] Predicted variance of the RD function using
the new method. [- - - .. Predicted variance assuming
uncorrelated time segments.

As seen the new method is superior to the method where
the correlation between time segments is neglected,

The positive point triggering condition is considered and
applied to the same simulated responses. Figure 5 shows
the simulated distribution of triggering points and the
auto correlation function.

Distribution of triggering points
1000
500
00 1 2 3 4 5 6 7 8

Aute correlation function

1 T T T T T T T -]

0 1 2 3 4 5 & 7 a

T
Figure 5:  Awerage distribution of triggering points
obtained by simulation wsing positive point {riggering
[a1 aa] = [ox oc] and the autocorrelation Sfunction of
the system.

As seen it would be highly erroneous to assume that the
time segments are uncorrelated. Figure 6 shows the sim-
ulated and predicted variance obtained from the theo-
retical auto correlation function and the simulated di-
stribution of triggering points.

Simulated and predicted variance

0.03

0.02

0.01

0 ‘ .
-10 -5 0 5 19
Auto correlation function

-1
-10 -5 o] 5 10
T

Figure 6: The simulated and the predicted variance of the
RD functions using point triggering [a1 @2] = [ox oo]
and the auto correlation function of the system. [——
J: Theoretical (sz'mulated) veriance of the RD function.
[+ -] Predicted variance of the RD Junction using the
new Mmethod.

Figure 7 shows the estimated RD function, the thecreti-
cal RD function and the distribution of triggering points
for a single realization of the response.

Theoretical and estimated RD function
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Figure 7: The theoretical and the estimated RD fune-
fron using positive point iriggering [a1 as] = [ox o0] and
the sample distribution of the triggering poinds, [——1:
Theoretical RD function. [-----]: Estimated RD function.

The variance predicted using eq. (9} and the variance
predicted by the new method are shown in fig. 8, where
the estimated RD function and the distribution of trig-
gering points from a single realization are used.



Simulated and predicted variance
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Figure 8 The simulatled and the predicied variance of
the RD funclions using positive point triggering [a; az] =
[cx o). [—]: Theeoretical (simulated) variance of the
RD function. [----.]: Predicted variance of the RD func-
tion using the new method. [~ - - -J: Predicted variance
assuming wncorrelaled time segments.

The new method is superior to the method based on eq.
(9) and predicts the variance very well.

In order to lock at a more complicated system and cross
RD functions a 2DOF system with the following modal
parameters is considered.

T (<%l [ B ] 87 [8 ]| 787
3.74 4.10 | 1L.000 | 1.005 | 0.00 | 177.7
6.27 450 | 1L.0600 | 9.995 | 0.00

Table 1: Modal parameters of o 2DOF system.

The theoretical correlation (RD) functions of the systewm
are shown in fig. 9.
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Figure 9: Theoretical correlation functions of a 2DOF
system.

The investigations are based on 50000 simulations of the
response of the system loaded by white noise followed
up by an estimation of the RD functions using the paosi-
tive point triggering condition with the triggering levels

[0) as] = [ex oc). Figure 10 shows the simulated distri-
bution of the triggering points and a single realization of
the distribution of triggering points.
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Figure 100 [—]: Simulated distribution of triggering
points. [ -] Distribution of triggering points from a
single realizaiion.

The distribution of triggering points is well descrihed
by a single realization of the measurements. Figures 11
and 12 show the simulated variance of the RD functions,
the variance predicted by eq. (9), the variance predicted
by the new method using the theoretical RD functions
and simulated distribution of triggering points and the
variance predicted by the new method using a single rea-
lization of the distribution of triggering points and the
correspondingly estimatled RD function.

Variance: Predicted and simulated
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Figure 11: Variance of RD functions. [— ] Simulated
variance. [- - - -]: Variance predicted from a single real-

ization. [ ----J: Variance predicted from theoretical RD
Sfunction and simulated distribution of lriggering points.
f—== J: Variance predicted by eq. (3.46).



Variance: Predicted and simutated
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Figure 12: Variance of RD functions. [—— ] Simulated
variance. [- - - -J: Variance predicied from a single real-

ization. [ ... .]: Variance predicted from theoretical RD
function and simulated distribution of triggering points.
== —J: Variance predicted by eq. (3.46).

The investigation of this 2DOF system also show that
the new method is superior to the predictions by eq.

(9).

5 Conclusions

An approach to predict the variance of RD functions has
been suggested. The method takes the correlation be-
tween the time segments into account by using the sam-
pled time points of the triggering points. The method
has been tested by simulation of different systerns. The
method seems to predict the variance very well at the
zero time lag and for time lags where the variance has
converged. It is superior to the method for predicting
the variance, which is based on uncorrelated time seg-
ments in the averaging process. It is an open question
if this increase in accuracy can pay off the increasing
computational time. Further investigations in order to
understand the approach are recommended.
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