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Abstract This paper deals with applications
of the vector triggering Random Decrement tech-
nique. This technique is new and developed with
the aim of minimizing estimation time and iden-
tification errors. The theory behind the technique
is discussed in an acccompanying paper. The re-
sults presented in this paper should be regarded as
a futher documentation of the technique. The key
point in Random Decrement estimation is the for-
mulation of a triggering condition. If the triggering
condition is fulfilled a time segment from each mea-
surement is picked out and averaged with previous
time segments. The final result is a Random Decre-
ment function from each measurement. In tradi-
tional Random Decrement estimation the triggering
condition is a scalar condition, which should only
be fulfilled in a single measurement. In vector trig-
gering Random Decrement the triggering condition
is a vector condition. The advantage of this new
approach should be a reduction in estimation time
without a significant loss of accuracy, since the vec-
tor triggering conditions ensure cross information
between the measurements in the Random Decre-
ment functions. The different problems with this
technique is highlighted in two examples. A simu-
lation study of a 4 degree of freedom system and
the identification of a laboratory bridge model, both
loaded by white noise, is made.

Nomenclature
a,ay,a2

DX.'XJ‘
\%
DX,'X

Triggering level /bounds
Random Decrement function.
Vector Random Decrement function.

N Number of triggering points.

t, 7, t Time variables, vector time variable.

Tx, Triggering condition on X;(t) (scalar).

Tx(t) Vector triggering condition on X(t).
Eigenfrequency.

¢ Damping ratio.

< Mode shape vector

1 Introduction

Since the introduction of the Random Decrement
(RDD) technique, see Cole 1], this technique has
been used for identification of several different
structures, such as off shore platforms, bridges,
aeroplanes etc., see reference {2] - [4]. The basic
idea in RDD estimation is to average time segments
of the measurements. The time segments are picked
out if the reference measurement fulfils a triggering
condition. Since only a single measurement should
fulfil the triggering condition it is denoted a scalar
triggering condition. The resulting averages from
each measurement are called RDD functions. To
each reference measurement a set of RDD functions
belonging together is estimated. A set of RDD func-
tions is usually interpreted as free decays or impulse
response functions from a virtual test. This depends
on the actual formulation of the scalar triggering
condition. If the measurements are Gaussian a rela-
tionship between the RDD functions and the covari-
ance functions of the time series is established, see
e.g. Brincker et al. [5]. By changing the reference
measurement a number of sets of RDD functions
corresponding to the number of measurements can



be obtained. This approach was introduced as the
multiple reference RDD technique, see Ibrahim [6].
The advantage is higher identification accuracy by
increasing the number of virtual tests. The modal
parameters can be extracted from the RDD func-
tions using methods like the Ibrahim Time Domain
technique or the Polyreference Time Domain tech-
nique, etc., which are based on impulse response
functions or free decays.

The main advantage of the RDD technique com-
pared to other identification techniques is the speed.
Since the estimation procedure only consists of a
simple averaging process followed by the solution
of an overdetermined set of linear equations and
an eigenvalue solution the total estimation time is
low. Only if the number of measurements is high,
the time segments are chosen with too many points
or extremely long time series are used, the estima-
tion time of the RDD functions will be unacceptably
high, especially if all measurements are used as ref-
erence measurements. Alternatively, only one or a
few reference measurements can be used. This will
reduce the estimation time, and also the amount
of information leading to higher identification er-
rors. Another problem is the signal-to-noise ratio
in the cross RDD functions. Cross RDD functions
are the functions which are obtained from any mea-
surement besides the reference measurement. Cross
RDD functions in most cases have a high signal-to-
noise ratio, since they generally contain less energy
(lower amplitudes) compared to auto RDD func-
tions.

These problems motivate the formulation of the
Vector RDD (VRDD) technique. By formulating
a vector triggering condition the number of possi-
ble setups is reduced with the size of the vector
condition. This reduces the estimation time. Fur-
thermore, since the cross information is preserved
using the vector triggering condition, no significant
loss in accuracy is expected. The theoretical as-
pects are considered in an accompanying paper, see
Ibrahim et al. {7]. The application of the VRDD
technique is justified in this paper by comparing
speed and accuracy with the traditional RDD tech-
nique. The comparison is based on simulated data
of a linear 4DOF system loaded by white noise, see
section 3 , and measurements of a laboratory bridge

model also loaded by white noise through a shaker.
see section 4 .

The simulation study shows that the VRDD tech-
nique is capable of reducing the estimation time
without any significant loss of accuracy compared
to the traditional RDD technique. The VRDD tech-
nique produced more accurate results than the tra-
ditional RDD technique, when only a single ref-
erence measurement is used. The analysis of the
bridge data results in a high correlation between
the modal parameters of the VRDD technique and
the traditional RDD technique. But still the VRDD
has lower estimation time.

2  Estimation Procedures

In traditional applications of the RDD technique a
set of RDD functions is estimated by.

. 1 X
Dx,x,(m) = NZXi(t'l'T)lTXJ(t) (1)

i=1

Where ¢ = 1,2,...,n, n is the number of measure-
ments and N is the number of triggering points
in X; detected by the triggering condition Tx;(1)-
Only a single set is required to estimate the modal
parameters. To use all the information in the mea-
surements, n sets can be estimated by applying the
triggering condition to all measurements and re-
peat the averaging process in eq. (1). Two dif-
ferent triggering conditions are tested with the tra-
ditional RDD technique, the level triggering condi-
tion, T_,[;J,(t), and the positive point triggering con-

o . P
dition, TX]-(t)'

T = {Xi(t) = a} (2)
T = {m < X;(t) < a2} (3)

Where the triggering levels are restricted by 0 <
a1 < ap. The decisive difference between these
two triggering conditions is the number of triggering
points. The positive point triggering condition pro-
duces more triggering points resulting in a higher
identification accuracy, but also higher estimation
time. In the examples the following three estima-
tion procedures are used for the traditional RDD
technique.



RDDE RDD functions estimated using Positive
point triggering. Only a single setup is used.

RDDﬁ RDD functions estimated using Level cross-
ing triggering. All possible setups are used.

RDDYL RDD functions estimated using Positive
point triggering. All possible setups are used.

VRDD VRDD functions estimated using positive
point triggering.

When RDDE is applied the reference measurement
is chosen as the measurement with the highest stan-
dard deviation. The signal-to-noise ratio is ex-
pected to be hightest in this measurement. Com-
mon for all methods is that the modal parameters
are extracted using the ITD technique, see Ibrahim

[8]-

In application of the VRDD technique a vector for-
mulation of the level crossing triggering condition,
see eq. (2), will not produce sufficient triggering
points to obtain a reasonable convergence in the av-
eraging process, see eq. (1) and (5). Instead Tfj(t)
is used in a vector form.

Txey = {a1 < X(t) <a} (4)

Where the triggering bounds fulfil 0 < ¢} < ai, i =

1,2,...,m and m < n. a} and a) are the elements
of a; and a,.

The VRDD functions, DV(7), are estimated by.

N
N 1
Di¥x(r) = =Y Xi(t+7)|TE,
N (t)

=1

(5)

Where : = 1,2,...,n. Notice that the triggering
condition does not has to be applied to all measure-
ments. If e.g. T )}{)(t) only covers half of the measure-
ments then a new set of VRDD functions could be
estimated by applying T}’z(t) to the second half of

the measurements. Vector time variable t in T)Iz t)
makes it possible to time shift the triggering condi-
tion at different measurements. This possibility is
important in order to formulate T)Iz(t) to obtain the
maximum number of triggering points.

3 Example 1 - Simulation

A viscous damped linear 4-DOF system is consi-
dered. The eigenfrequencies and damping ratios are
shown in table 1 and the mode shapes, which are
approximately in or out of phase, are plotted in
figure 1.

Mode 1 2 3 4
f(Hz] | 1.62 | 4.61 | 6.86 | 9.00
¢ [%] 3.70 | 2.07 | 1.16 | 1.52

Table 1: Modal parameters of 4 DOF system.
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Figure 1: Mode shapes of 4 DOF system.

The response of this system is simulated by an
ARMAV-model, see Andersen et al. [9]. The sam-
pling frequency is 50 Hz and 8000 points are si-
mulated in each time series. In order to describe the
accuracy of the different methods statistically the
simulation and estimation procedure are repeated
500 times. The following three quality measures
are used.

. 1 |z; — &4
Relative Error = 6)
Npar ; Ty (
N o
. 1 Par .
Bias = loi = & (7)
Npar i=1 Oz;
N
1 Par )
Variance = Tz: (8)
Npqr Ty

In the above equations z; describes an eigenfre-
quency, damping ratio or the absolute value of a
mode shape component. The mode shapes are nor-
malized with the largest absolute value.



The triggering levels, see eq. {2) and (3), are chosen
toa =14 -0x,a = 0, az = . The triggering
levels of the VRDD approach are a; = 0, a, =
oc. This choice ensures the maximum number of
triggering points for a given time vector t. The time
vector 1 is chosen from an initial RDD estimation
with short time segments, see figure 2.
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Figure 2: Initial RDD functions for selection of
iriggering time delays. Estimated (full) and theo-
retical (dotted). C21 is an abbreviation for the cor-
relation function between measurement 2 and 1.

Since the simulated time series are zero mean Gaus
sian the estimated RDD functions are proportional
to the correlation functions of the time series, see
figure 2. The elements of the time vector t is chosen
as the time lags where the correlation is maximum.
In this case the time vector is t = 0, but this is a
coincidence. The quality measures in eq. {6) - eq.
(8) are shown in table 2 - 4,

Method | RDDf | RDDYL | RDDY | VRDD
f 0.016 | 0.004 | 0.003 | 0.003
¢ 1.260 | 0.214 | 0.115 | 0.214
P 2.430 | 0.763 | 0.508 | 0.117

Table 2: Relative error measure for f, { and ®

Method | RDDg | RDD% | RDDE TVRDD
f 0.040 | 0.010 | 0.006 | 0.008
¢ 4.637 | 0.475 | 0.285 | 0.481
o 6.428 | 2.042 | 1.800 | 0.288

Table 4: Variance measure for f, { and ®

Table 5 shows the estimation time (CPU in [sec))
for the different methods and the number of trig-
gering points. The initial estimation process for the
VRDD technique is also included.

RDDE | RDDLY | RDDE [ VRDD | ini
Time | 1.39 1.40 5.56 1.05 | 0.31
N 3950 470 3950 | 1590 | 3950

Table 5: Estimation Time (CPU-time [sec]) and
triggering points, N.

Table 6 illustrates the conclusion of the results in
table 2 - table 4 and table 5. The number of +
indicates the value of the methods with respect to
either estimation time or accuracy.

Method 1 2 3 4
Quality | + | ++4 | ++++ | +++
CPU Time | ++ | ++ + ++

Method | RDDE | RDDY | RDDY | VRDD
f 0.774 | 0.843 | 0.804 | 0.803
¢ 0.675 | 0.876 | 0.809 | 0.858
P 2.322 | 2.170 | 2.228 | 0.937

Table 3: Bias measure for f, { and ®

Table 6: Value of the different methods.

The simulation study indicates that the VRDD ap-
proach is efficient in the sense of having low esti-
mation time and high accuracy. Method 3 is rec-
ommended only if estimation is not a problem and
high accuracy modal parameters are needed.

4 Example 2 - Experiment

This example is based on the measured accelera-
tion response of a laboratory bridge model loaded
by white noise. The bridge model is a 3-span sim-
ply supported 0.01 m thick steel plate with a total
length of 3 m and a width of 0.35 m. Figure 3 shows
the bridge model. The bridge is excited by a shaker
attached at the right-hand span. Only identifica-
tion of the mid-span bridge is considered in this
paper. The 16 different locations of the accelerom-
eters at the mid span are indicated in the figure.
The measurements are sampled at 150 Hz and the
white noise load is exciting the frequency span 0-60



Hz. The measurements are filtered analogously and
digitally after sampling.

Figure 3: Laboratory bridge model and location of
accelerometers.

Each measurement consists of 32000 points. The
measurements are collected using three setups with
7,7 and 6 measurements in each setup, since two
reference points are used.

In order to apply the VRDD approach, the time
shifts between the elements of the vector triggering
condition should be chosen. As an example, the last
setup with 6 measurements is considered. Figure 4
shows the initial estimate of the RDD function using
level crossing triggering condition (¢ = 1.4-0ox, ).
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Figure 4: Initial RDD functions for selection of vec-
tor triggering time delays. C31 is an abbreviation

of the correlation function beiween measurements 3
and 1.

The correlation are maximized by choosing the time
vector as ¢ = [0 0 0.06 0.06 0.0533 0.0533] or if the
number of time lags is considered ¢ =[0 0 9 9 8 8].
A time vector chosen as t = [0 099 —3 — 3] would

also have been a good choice. The size of the vector
triggering condition does not have to be equal to the
number of measurements. Table 7 shows the actual
number of triggering points as a function of the size
of the vector triggering condition. The elements of
the triggering levels, see eq. {4), are all chosen as
ai = 0.50x and ab = oo.

Size ! 2 3 4 5 6
N 9900 | 8200 | 4600 | 4200 | 2600 | 2400

Table 7: Size of vector triggering condition and the
corresponding number of triggering points.

The number of triggering points decreases with the
size of the vector triggering condition. About 2000
triggering points are sufficient for a reasonable con-
vergence in the averaging process. So the vector
triggering condition is of size 6 (7).

For the traditional RDID) technique the maximum
number of sets of RDD functions is estimated. The
triggering levels are chosen as a; = 0.50%, az = co.
Any point between 0 and 0.5¢x is omitted to avoid
false triggering points. This level is expected to
be dominated by noise. An average of the actual
number of triggering points and the estimation time
is shown in table 8 for the RDI) technique and the
VRDD technique. Level crossing triggering with
a = 1.4-0x is used for the initial estimate for the
VRDD functions.

Method | RDDY | VRDD | ini
Time 365 120 5
N 8700 1700 | 5000

Table 8: Estimation Time (CPU-time [sec]) and
number of triggering points (average), N.

The modal parameters are extracted from the
VRDD and the RDD functions using ITD. A sta-
bilization diagram used with restrictions on the
damping ratios ({ < 10%) and the modal confi-
dence factors is used to select the physical modes
from the computational modes. Due to the loading
every physical mode is taken as a structural mode,.
Table 9 shows the estimated modal parameters for
the two appoaches.



| FHz [ 1T T 2 T 3 |
RDDY | 12.35 [ 21.84 [ 45.13
VRDD | 12.35 | 21.84 | 45.15
F [Hz] 4 5 5

RDDY | 48.14 | 51.70 | 61.57
VRDD | 48.11 | 51.64 | 61.59

¢ [%] 1 2 3
RDD’ 10.023 10.028 | 0.002
VRDD | 0.026 | 0.019 | 0.003

T | 4 5 6

RDDY | 0.004 | 0.022 | 0.005
VRDD | 0.004 | 0.010 | 0.002

i
Table 9: ‘ Estimated eigenfrequencies F' in Iz and
estimated damping ratios ¢ in %

From table 9 it is seen that there is a high correla-
tion between the estimated modal parameters even
for the damping ratios. The first pure bending and
the first pure translational modes are shown in fig-
ure 5 and figure 6. |

RDD #=12.35 Hz

04 06

0.2 o Q.2

VRDD f=12.35 Hz

oz 0 o2 04 0F

Figure 5: First bending mode of mid span. Esti-
mated by RDD and VRDD.

Visually there is practically no difference between
the two different estimates of the modes in figure 5
and figure 6. The MAC value between the estimates
are 0.9984 for the bending mode and 0.9999 for the
rotational mode.
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Figure 6: First rotational mode of mid span. Esti-
mated by RDD and VRDD

5 Conclusion

The application of the Vector triggering Random
Decrement technique is justified through a simula-
tion study and through analysis of the acceleration
response of a laboratory bridge medel. The theo-
retical arguments are discussed in an accompanying

paper.

The simulation study show that the VRDD tech-
nique gives a good trade off between speed and ac-
curacy. Only if all information is extracted by ap-
plying the positive point triggering condition and
estimate the full number of setups, the RDD tech-
nique produces more accurate results. But the pro-
cedure is relatively slow.

The analysis of the bridge data resulted in a high
correlation between the modal parameters esti-
mated from RDD and VRDD functions. An ap-
proach to estimate the optimal time shifts for the
formulation of the vector triggering condition is il-
lustrated. The advantage of the VRDD technique
is illustrated through a 5 time reduction of the es-
timation time.
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