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ABSTRACT

This paper presents the results from a state space system
identifcation simulation study of a 5-degrees-of freedom
system driven by white noise. The aim of the study is to
compare the durability of the fairly new Stochastic Subspace
Technique (SST) with more well-known techniques for
identification of civil engineering structures. The SST is
compared with the stochastic realization estimator Matrix
Block Hankel ( MBH) and a prediction error method (PEM).
The results show that the investigated techniques give good
results in terms of estimated modal parameters and mode
shapes. Especially, it is found that the new SST technique
gives quickly good results compared with the PEM which
takes more time with only a limited improvement of the fit on
data.

NOMENCLATURE
M Mass matrix
K Stiffness matrix
c Damping matrix
z(t) Displacement vector
x(t) State vector
y(t) Measurement vector
t Time
F Continuous-time eigenvector matrix
E Input matrix
A State transition matrix
B Input matrix
Cc QObservation Matrix
D Auxillary observation matrix
G Damping ratio of the jth mode
f; Eigen-frequency of the jth mode
u Discrete-time eigenvalue matrix
W Eigenvector
A Continuous-time eigenvalue matrix
w(t) Process noise
v(t) Observaton noise
Yi2i4 Row space
; Orthogonal projection of the row space of Y4
Hy () Hankel matrix
Q Observability matrix

I Covariance matrices

1. INTRODUCTION

System identification is generally the art of mathematical
modelling given input-output data from a dynamic system.
System identification techniques are often originated from
electrical engineering and thereafter adapted to civil engine-
ering. Recently, subspace-based methods for system
identification have attracted much attention in electrical
engineering, see e.g. Van Overschee et al. [1], De Moor et al.
[2]. This interest is due to the ability of providing accurate
state-space models for muitivariate linear systems directly
from measured data. The methods have their origin in
classical state-space realization theory as developed in the
1960's, see e.g. Aoki [3]. The main theorem of the subspace
theory demonstrates how the Kalman filter states can be
obtained from input-output data using linear algebra tools
(QR and SVD). Once these states are known, the identifica-
tion problem becomes a linear least squares problem in the
unknown system matrices. The parametrization is easy and
convergence is not iterative and guaranteed. The subspace-
methods do not rely on soiving a highly nonlinear optimiza-
tion problem and a canonical parametrization as e.q. used
with Auto-Regressive-Moving Average Vector (ARMAV)
models, see e.g. Andersen et al. [4], Kirkegaard et el. {5].
Comparing to the traditional stochastic realization methods
such as e.g. the Matrix Block Hankel (MBH) and the Eigen-
value Realization Algorithm (ERA) the subspace techniques
are data driven instead of covariance driven, so that the
explicit formation of the covariance matrix is avoided. If the
external input is unknown a Stochastic Subspace Technique
(SST) can be used to determine the system matrices, Van
Overschee et al. [1]. This technique could be useful for the
determination of the modal parameters of civil engineering
structures which often are excited by unmeasured ambient
loading. A first attempt to use SST in civil engineering was
presented in Peeters et al. [6] where promissing results were
obtained. The aim of the present paper is to evaluate the
durability of this new SST for identification of civil engine-
ering structures. The SST is compared with the more
well-known stochastic realization estimators Matrix Block
Hankel (MBH) , see e.g. Hoen [7]. Further, these state-space
identification techniques are compared with a prediction
error method (PEM) The comparisons in the paper are based
on simulated data from a 5-degrees-of freedom system
driven by white noise.



2. STATE SPACE MODELLING OF STRUCTURAL
SYSTEMS

Consider a multivariate continuous-time civil engineering
second order structural system with ny degrees of freedom.
The system is assumed to be time-invariant and described by
a positive definite diagonal mass matrix M, a symmetric semi-
definite viscous damping matrix C, and a symmetric positive
definite stiffness matrix K. For the present purpose the
system is excited by a, for the present purpose, deterministic
load vector u(f) through a selection matrix S. Denoting the
zero-mean response vector by z(f), the differential equation
of this system is

#Ht) + MCi(t) + M 'Kz(1) = M 'Su(t) (D)

Stacking the identity Z(#) =Z(¢)and (1) on top of each other
yields the state equation

d 0 I 0
i(’) _ ] ) Z(')] " ) u(t) (2)
(1) -M'K -M'C|li(n) Ms
Compactly this equation can be written as
X(t) = Fx(t) + Eu(t) , x(0) = x, (3)

The vector x(f) is the state vector, which in the present case
consists of nodal displacements and velocities. The matrix F
is the state matrix, whereas the matrix E is referred to as the
input matrix. The state matrix F comprises all information
about the system and provides as such a full description of
the system.

The system response of the state space system can be
observed through an observation vector y(f). The response
depends on the type of measurements and the process to be
measured. In the present case the response will typically be
either displacements, velocities, or accelerations. In the
general case the response y(f) will be a linear combination of
these three cases. Let &, E, and E, be coefficients that weight
the contributions of the displacements, velocities and
accelerations, respectively. The response is then obtained
from the following equation

(1) = Ez(e) + E i) + & #(1)
(7 o], [0 I]EE,F)x(nr+[o IEEu) (4)

Cx(t) + Du(t)

It is seen that the general system output includes a linear
combination of the state variables and a direct term Du(f).
Equation (4) is named the observation equation. The combi-
nation of the state space and the observation equations fully
describes the input and output behaviour of the continuous-
time structural system and is as such named the state space
system.

2.1 Sampled deterministic state space system

The discrete-time sampled version of the state space system
can be obtained by applying a zero-order hold approximation.
The discrete-time state space system is then obtained as

x(t+1) = Ax(¢) + Bu(t) , x(0) =x,

)

y(ty = Cx(t) + Du(z)

where the index t now signifies discrete time instance and
x(f) signifies the discrete-time zero-mean state vector. The
state matrix A and the input matrix B are given by

= L, FT
A =e ,

B = FY A-I)E (6)

with T being the sampling interval, whereas the discrete-time
observation matrix C and direct term D is unaffected by the
sampling

The system in (5), however, does not account for disturbance
that affects the structural parameters describing the system
This disturbance affects the states and can eg. be
environmental variations, such as the temperature causing
changes of the stiffness of the structure, or other modelling
inaccuracies. This disturbance is termed process noise and
is denoted w(f). Further, when a system is sampled there will
most certainly be introduced some observation noise v(f),
due to e.g. limited measurement accuracy, or sensor inaccu-
racies

2.2 Stochastic discrete-time state space system

By treating the noise terms w(f) and v(f) as stochastic
processes, and by adding these to the state space equation
and the observation equation, respectively, the stochastic
state space system is defined as

x(t+1) = Ax(t) + Bu(t) + w(t) , x(0)=x,

(7

y(8) = Cx(t) * Du(r) + v(2)

The difference between this state space system and (5) is
that it includes the two stochastic terms, which are the
reason for its name. Both w(f) and v(f) are assumed to be
weakly stationary and independent identically distributed
random variables with zero-mean, which implies

w(t) . . _ (12N )
E V(t)] =0, E[ [w7G) v (1)]] = [ST R]é(t—j)(S)

where 6 is the Kronecker delta function. @ and R are as-
sumed to be positive definite and semi-definite respectively.
The measurement noise v(f) will in the general case be
correlated with the process noise w(f), see Ljung {11] and
Hannan et al. [10].

w(t)
v(1t)




In some cases only the output y(f) is known. This is the
typical case in system identification of ambient excited civil
engineering structures. This implies by omitting the input term
that the state space system looks as follows

X(1+1) = Ax(t) + w(t), p(1) = Cx(1) + v(t) (9)

3. IDENTIFICATION OF STATE-SPACE MODELS

This section presents three state space system identification
technigues which can be used to identify a system only from
output measurements. The results of the estimation tech-
niques are the state space matrices {A, C}.

3.1 Stochastic Subspace Technique

Subspace algorithms for identification of linear dynamic
systems have recently been considered in a number of
papers, see Van Overshee et al. [1] and De Moor et al. [2].
The main theorem of the subspace theory demonstrates how
the Kalman filter states can be obtained from input-output
data using linear algebra tools (QR and SVD). Once these
states are known, the identification problem becomes a linear
least-squares problem in the unknown matrix pair {A, C} . If
the external input is unknown, a stochastic subspace tech-
nique (SST) is used to determine the system matrices.
Compared to the stochastic realization methods in the
following section, the SST is data driven instead of
covariance driven, so that the explicit formation of the
covariance matrix is avoided. In the following the SST is
briefly described based on Van Overschee et al. [1] and De
Moor. Et al. [2].

in order to use the SST it 1s assumed that the system is
observable. The SST relies on output block Hankel matrices
of the form

0y ¥ . . yG-1
yy  y@2) . .y»

ol-1 (10)
bbG-1 ¥y . . yy-2)

where the first subscript denotes the time index of the upper
left element, while the second subscript is the time index of
the bottom left element. For all output block Hankel matrices,
the number of columns will be j, and for all theoretical
derivations it is assumed that j - «.

An orthogonal projection Z; of the row space of ¥, (the
future) onto the row space of Yq,; (the past) is introduced

z, = y,m_l/y 1)

ol1-1

By singular value decomposition of this projection it can be
proved that

z, =X, (12)
which is the product of the extended observability matrix Q;

0, = [c” €Ay cay (€AY (13)

and ,\"E [£() £(@z+1) ... 2(¢+j-1))], which is the Kaiman state
sequence. Further, it can be proved that another projection
Z,,is defined as

Zu: = Ymm—l/y (14)

0li

implying that

Z,= 0. %, (15)

From (13) and (15) the Kalman states can be obtained from
output data using singular value decomposition techniques
which mean that the matrix pair {4, C} can be estimated from
the following set of linear equations

A
C

"“] (16)

Py

where the last term consists of residual matrices. A numeri-
cally efficient way to solve this set of linear eaquations is
described in Van Overschee et al. [1].

3.2 Matrix Block Hankel Stochastic Realization Estimator

The Matrix Block Hankel stochastic realization estimator is a
covariance driven estimation technique. The present algo-
rithm is based on Aoki [3], whereas the name of the tech-
nique is due to Hoen [8].

The estimation of the matrices {A, C} is based on a
decomposition of a block Hankel matrix of the form

r T, T,
r, r.,..r.
Hyp)=| """ - (17)
Fp -1 Fp Y Fp +frk-2

which for p=1 is the product of the observability matrix Q; and
another matrix called Q,, defined as

Q, = M aM AM . . A*'M] (18)

First the singular value decomposition USV’ of the Hankel
matrix Hy(1) is calculated. In this matrix the theoretical



covariance matrices I, of the response have been replaced
by sampled covariance matrices. By a proper choice of
coordinate system an internal balanced estimate of the triple
is then obtained

o,

= ST*UTH (2)VS™*

(19)

o}

= H ()VS™

The constants ; and k will in general be equal to the state
space dimension divided by the number of observed outputs.
For minimal systems the estimates are unique, because the
Gramians 070, and Q,Q," are non-singular.

3.3 Prediction Error Methods

The Prediction Error Method (PEM) contains the most known
and used methods for system identification and has been
developed and analysed extensively during the last three
decades, see e.g. Ljung [9] and Andersen et al. [7]. In order
to use PEM for system identification, a parametrization of the
state space matrices in (9) is made to obtain the predictor of
the state space system output y(f). The parameters of the
model are calculated by minimizing a quadratic loss function
Vot the pradlicdion avas s = )i 0, giviing

N
Z eT(1,)W 'e(t,) (20)

1
Niz
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where W is a weight matrix, and N is the number of output
measurements. The minimization of (19) is in general
nonlinear in the parameters and has to be solved by an
iterative method, e.g. Gauss-Newton algorithm. This
optimization depends highly upon the initial guess of the
parameter vector, see e.g. Ljung [9].

4. EXAMPLE

Iin the following example the performance of the SST is
compared with the performance of MBH and PEM:The
reference system is a 5-dof linear system excited by
Gaussian white noise. The reference system has been
converted, using a sampling interval of 0.015 seconds, from
a continuous-time description to a covariance equivalent
discrete time ARMAV model, see Andersen et al. [4]. The
eigenfrequcies f; and damping ratios; { of the simulated
system are

S, = {2.1405, 7.5897, 13.2922, 17.9697, 21.0034}
{, = {0.0124, 0.0134, 0.0261, 0.0271, 0.0331}

The modal parameters can be determined from the following
eigenvalue problem

Uw, - ¥, & =C¥, j=1,2,..,n (22)

where W; is the jth eigenvector of the system, and H is the
correspondlng eigenvalue. The ny x 1 vector ®; is the
observed part of the eigenvector, and referred to as the
scaled mode shape. For a stable underdamped system all
structural modes are represented by complex conjugated
pairs of eigenvalues and corresponding mode shapes. The
complex conjugated pair of eigenvalues {p,,pm} can be
equivalently expressed in terms of eigenfrequencies £ and
damping ratios ¢ by converting each of them to continuous-
time eigenvalues A;= log(p)/T, resulting in

WApdin} = —2nf0 & nnfy1 -0
/- 1_22 ~Re(X) (23)
(Y 2mf,

The estimated mean values and standard deviation of the
eigenfrequencies and damping ratios are shown in rows 1
to 15 and 16 to 30, respectively, in tables 1, 2, 3 and 4 from
25 simulation runs with N ={1250, 2500, 5000, 10000}
samples, respectively. Gaussian white noise has been added
to the output of the system amounting to o, = {1, 5, 10} % of
the mean of the standard deviations of the simulated output.

Further, the mean values and standard deviation of the trace
of the MAC-matrice are shown in the tables in rows 31 to 33.
The Modal Assurance Criteria (MAC) which is a commonly
used method for assessing the degree of correlation between
any two eigenvectors is given by

MAC, ﬂ_]_ (24)

SN SOt Tg

where H is the complex transposed

The identification is performed using a state space order
equal to 10 for both SST and PEM. However, the optimal
state space dimension for the MBH estimator is 30. This
dimension results in the estimation of some spuerious modes
in the MBH estimation. Physical modes were selected using
stabilization diagrams.

The tables 1-4 show that both the eigenfrequencies have
been identified very well. Especially, the SST and the PEM
estimates are very close to the modal parameters of the
reference system. The MBH method is seen to give poor
estimates of the damping ratios and the mode shapes
compared with the two other techniques. Further, it is very
interesting that the SST gives estimates of both modal
parameters and modes shapes which are of same quality as
the estimates obtained by the PEM. The SST is approxi-
mately ten times faster then the PEM.



5. CONCLUSION

This paper presents the results from a state space system
identifcation simulation study of a 5-degrees-of freedom
system driven by white noise. The aim of the study was to
compare the durability of the fairly new Stochastic Subspace
Technique (SST) with more well-known techniques for
identification of civil engineering structures. The results have
shown that the investigated techniques give useable results
in terms of estimated modal parameters and mode shapes.
Especially, the PEM and the SST algorithms reveals a high
degree of agreement with the modal parameters and mode
shapes of the reference system. Further, it is found that the
new SST technique gives quickly good results compared with
the PEM which takes more time with only a limited improve-
ment of the fit on data.
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Table 1: Mean values and standard deviation of 7/, { and rr (MAC)
for N=1250

Table 2: Mean values and standard deviation of /. { and tr (MAC)
for N=2150¢
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5 5 21.0099 (0.0876) 20.9784 (0.2528) 21.008¢ (0.0891) 3135 21,0246 (0.0448) 210665 (0.1300) 21.0242 (0.0461)
5010 21.0991 (0.3089) 209010 (0,5524) 20,9906 (0.1583) 5| 10 21.0319 (0.1206) 209377 (G.4746) 21.0231 (0.0975)
1 i 0.0118 (0.062% 00365 (0.1970) 00116 (0.0026) 1 1 0.0121 (0.0028) 0.0104 (0.0044) G020 (0.0028)
115 0.0119 (0.0030) 0.0971 (0.2727) 04118 (0.0029) 115 0.0126 (0.0027) 0.0343 (0.1827) 0.0126 (0.0026)
1 10 0.0119 (0.0030) 04504 (0.1968) 0.0120 (0.0031) {10 0.0126 (0.0027) 0.0274 (0.0577) 0.0126 (0.0026)
2 1 0.0130 (0.6017) 00129 (0.0034) (.01530 {0.00§7) 211 00135 {0.0015) 0.0531 (0.1973) 02135 (0.0015)
2 5 0.0129 (0.0017) 00153 (0.0127) 0.0129 (0.0017) 215 0.0141 (0.0013) 0.0134 (0.0038) 0.014¢ (0.0013)
2 HY 0.0i28 (G.0017) 0.0190 (0.0354) 0.0128 (0.0018) 2 10 ¢.0141 (0.0013) 0.0181 (0.0177) 0.0040 (0.0014)
3 1 0.0253 {0.001T) 0.0432 (0.0691) 0.0253 (0.0018) 3 1 00236 (0.0014) (.0254 {0.0031) 0.0257 (0.0014)
3 5 0.0256 (0.0021) 0.0277 (00111 0.0256 (G.0022) 315 0.0262 (0.0015) 0.0256 (0.0089) 0.0262 (0.001N
3 10 00261 {0.0026) 0.0510° {0.1053) (0257 (0.0027) 3 [0 0.0264 {0.0020} 0.0482 (0.0754) 0.0263 (0.0017)
4 | 00270 (0.0015) 0.027%  (0.004%) 0.0269 (0.0010) 411 1.0272 (0.0815) 0.0262 (0.0046) 00272 (0.0016)
4 5 0.0267 (0.0027) 0.0682 (0.1943} 0.0268 (0.0027) 415 0.0267 (0.0014) 0.0294 (0.0103) 0.0267 {C.0015)
4 10 0.0270 ({0.0049) 0.0316 (0.0285% 04263 (0.0046) 4 10 0.0204 (0.0017) 0.0323 (0.023N 0.020% (0.0019)
5 1 00324 (0.0018) 0.0416 {0.0473) ¢.0321 (D.00i8) 5 1 0.0330 (0.0017) 0.0335 (0.0148) 0.0329 (0.0018)
3 i 0.0325 (0.0029) ¢.0338 (0.0209) 0.0316 (0.0029) 515 0.0325 (0.0024) 00305 (0.0235) 0.0326 (0.0026)
5 10 0.0364 (¢.0091) 00641 (0.0752) 0,030t (0.G055) 5 10 0.032% (0.0055) 0.043) {0,048%) 0.0325 (0.0045)
M1 4,9992 (0.0002) 48335 (0.269%5) 45992 (0.0003) M 1 4.9995  (0,0001) 40064 (C.1618) 49395 (0.0002)
Al S 19945 (0.0016) 47606 {D.3030) 49945 (0.0016) Al S 49975 {0.0011) 48211 (0.229%) 499735 (0.0011)
C 14 49658 (0.0146) 44195 (0.4250) 49679 (0.0138) C| 10 4,9853 (0.0071) 4.6050 (0.4058) 4.9855 (0.0006)
Table 3: Mean values and standard deviation of f . £ and v (MAC) Table 4; Mean values and standard deviation of £, { and tr (MAC)

for N=35000.

for N=10000




