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ABSTRACT

In this paper the theoretical background for using covariance
equivalent ARMAV models in modal analysis is discussed. It is
shown how to obtain a covariance equivalent ARMA model for
a univariate linear second order continuous-time system excited
by Gaussian white noise. This result is generalized for multi-
variate systems to an ARMAV model. The covariance equiva-
lent model structure is also considered when the number of
channels are different from the number of degrees of freedom
to be modelled. Finally, it is reviewed how to estimate an
ARMAV model from sampled data.

NOMENCLATURE

m Diagonal mass matrix

c Symmetric damping matrix

k Symmetric stiffness matrix

T Sampling period

g Modal weight of impulse response

d Modal weight of the covariance matrix

Y Lagged covariance matrix of response process

o’ Covariance of a Gaussian white noise process x

y(@) Continuous-time system response

u(t) Continuous-time Gaussian white noise
x(t) Continuous-time state vector

h(7) Impulse response function

A Continous-time state space matrix

B Continuous-time excitation matrix

b Continuous-time excitation vector

m, Scaled modeshape

M Eigenvectors of A

u Eigenvalues of A

p Diagonal matrix of eigenvalues p;

Y, Discrete-time system response

a, Discrete-time Gaussian white noise

X, Discrete-time state vector

G, Green'’s function

0] Discrete-time state space matrix

6 Discrete-time excitation matrix

L Eigenvectors of ¢

], Scaled modeshapes

A Eigenvalues of ¢

A Diagonal matrix of eigenvalues A,

b, Auto-regressive polynomial coefficients
0, Moving-average polynomial coefficients

1. INTRODUCTION

The use of non-parametric FFT-based methods has for many
years been one of the most popular tools in modal analysis, but
recently the interest in using parametrical models as the basis
for modal analysis has increased. Since, the usual way of
obtaining information about a structure is through sampling, all
parametrical models are in some sense discrete cquivalents to
the continuous system. There are several mcthods for dis-
cretization. Some of these are approximation using polc-zero
mapping, see Astrém et al. [1], and approximation by hold
equivalence techniques, see Safak [2]. But perhaps the most
used approximation is the covariance equivalence technique, sce
Bartlett [3], Kozin et al. [4] and Pandit et al. [5]. In this paper
the theoretical background for using covariance cquivalent auto-
regressive moving-average vector (ARMAV) models in modal
analysis of civil engineering structures will be discussed. This
is done by showing that a second order linear continuous-time
system can be modelled by an ARMAV model. The results can
immidiately be used as an effective simulation tool in casc of
white noise excitation, but can also be used for identification of
structural systems from sampled data.

The theoretical considerations of this paper have been used in
Kirkegaard et al. [6] for identification of the skirt piled Gullfaks
C gravity platform, and in Brincker et al. 7] for identification
of a multi-pile offshore platform.

In section two it will be shown how to obtain a covariance
equivalent univariate (single channel) ARMA model of a
single-degree of freedom system. Section three generalizes these
results to a multivariate ARMAYV model for a multi-degree of
freedom system. The fourth section explains how to obtain a
covariance equivalent univariatt ARMA model for a multi-
degree of freedom system. Finally, in the fifth section, it is
described how these models can be calibrated to sampled data.

2. UNIVARIATE MODEL - SDOF SYSTEM

There are two criterions that must be satisfied in order to make
an ARMA model covariance equivalent to an SDOF
continuous-time linear system. Firstly, the modal properties
must be equal, i.e. eigenfrequency and damping ratio must be
the same. Secondly, the discrete-time autocovariance function
of the system response must in some sense be equal to the
continuous-time autocovariance function. The derivation



therefore starts by considering a second order continuous-time
wystem described by the differential equation

milry - exiry - kylry = uir {1)

where #, ¢ and k are the mass, damping and stiffness terms. ¥{r}
is the response of the system. and u(f) is an independent
distributed Gaussian white noise excitation with zero-mean and
the variance ¢,°. It is realized that the white noise approxima-
tion may not provide a very good approximation of non-white
excitation, but it simplifies the autocovariance function and
thereby also the resulting ARMA maodel. In section six. it will
be explained how to deal with non-white excitation,

In continuous-time state space (1) is described by

X(t) = Ax(ty + bult) (2}

where x{t)={y(t), ¥(1)]7, and
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The solution of (2) is given by

I
x(r) = e*x(0) + [et"" " Vbuls)dy 4
(4)
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and the response is the top half of x(£). In order to simplify (4)
the continuous-time modal matrix A is decombosed

A= MpM!
I 1

M = (5)
Hy My

n = diag {p,], =12

where p is a diagonal matrix of distinct eigenvalues, and M is
a Vandermonde maltrix containing the corresponding eigen-
veclors. It is the cigenvectors that control the structure of A,
whereas Lhe eigenvalues control the values of the bottom row of
A.

Inserting the decomnosed modal matrix into (4) vields
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where A(T)=Me"*M 'b is the impulse response function of
the state space system. The first part of (6) is the deterministic
or transient part. and the last is the stochastic part.

From k(7)) the impulse response of v(¢) can be extracted.
Denoting this impulse response by #'(1) yields
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where the g 's are modal weights. Assuming stationary condi-
tions, i.e. initial values x((0 = 0 and lul < O for both eigenvalues,
the autocovariance function of (1} is defined as

y(t) = oﬁfk-"(r)h-"(nr)d:
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where the d,;’s also are modal weights, defined as
2
d, = —Gii - BerBes
2y, Hy+H,
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Now turning to discrete time, it will now be shown that an
ARMA(2,1) model with two auto-regressive parameters and one
moving-average parameter is an adequate model. Defining the
discrete response, Y, as y(kT), where T is the sampling period,
the ARMA(2.1) model is given by

Yr = - ¢]Yf-l - (bzyr—z, ta + elaz-l (10)

where §,, ¢, are the auto-regressive parameters, and 6, is the
moving-average parameter. a, is an independent distributed
(Gaussian white noise with zero-mean and variance @,’. Repre-
senting (10) in discrete-time state space yields



Xl’ = ¢XI-1 + Ba[ (11)

where X =[Y,, ¥,_ 17, a,={a, a,_,1", and

_‘b _d)": 1 e
o= ' |, 8= : (12)
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The solution of (11} is given by
T
X, = ¢'X, + zd)"ﬁaw. (13)
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and the response Y, is the top half of X, The discrete-time modal
matrix, ¢, can be decomposed in the following way

& = LAL™?

A A A0 {14)
L = 1 2 A= 1

11 0 2,

where A is a diagonal matrix of distinct eigenvalues, and L is a
Vandermonde matrix containing the corresponding eigen-
vectors. Again, it is the eigenvectors that control the structure
of ¢, and the cigenvalues that control the values of the top row

of ¢.

Inserting the decomposed modal matrix into (13) yields

H
X, = LAL'X, + }:DLML"Ba:_j
=

{15}

Similar to the continuous-time case the first part of (15) is the
deterministic or transient part, and the last is the stochastic part.

In order to make the ARMA model covariance equivalent, the
continuous-time system and the discrete-time system must be
equal at all discrete time steps &, such thatr = kT, fork =0, .., =,
The deterministic parts in (6) and (15) must therefore be equal,
This is accomplished if A* = ¢™7, or equivalently if A = o7
for all eigenvalues. The result that can be drawn from this is that
a stable underdamped continuous-time SDOF systemn with two
complex conjugated eigenvalues, also has two complex conju-
gated eigenvalues in discrete time. This is the reason for why it
is necessary to have two auto-regressive parameters. So, at this
point, the auto-regressive part of (10} can be constructed on the
basis of the continuous-time modal matrix A in (3}. Determine
the eigenvalues, g, and the eigenvectors M. Calculate the
discrete eigenvalues, A, by using the jdentity A = ¢*”. Finally,
calculate the discrete-time modal matrix, ¢, using the similarity
transformation in (14). The auto-regressive parameters will then
be given by ¢, = -4, - A, and ¢, = 4,4..

However, the present auto-regressive mode! is not covariance
equivalent, which is why it is necessary to add the moving-
average. The reason for adding only onc moving-average
parameter can be seen by looking at the autocovariance function
of {10). In order to calculate the autocovariance function, it is
assurned that the initial values, X, and a,, for t < 0, are zero. By
applying the modal decomposition of (14) to {13), the response
can be expressed in terms of the scalar Green's function, see
Pandit [8] as

I
Y,=3 Ga,, {16)
Jj=0
where the Green's function is defined as
G. = 3'1 * a] ;le . 3'2 + e] A:lz
4 Ay - 12 Ay - A,
) ) . {17)
=g, N+ gk, j=z0
= Oy j < 0

and the g's are modal weights. Based on (16) and (17} the
autocovariance function of (10), see Pandit et al. [5], it

¥, = oj_z GG,
f=0 (18)
=dA v dAy, 5=0, 1,2, ..
The modal weights in (18} are defined as
2
d] - Ui & . 05 8182
1-3 1-44,
2 (19)
g, = o), 2 E1
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To make the ARMA moae! covanance equivalent, the d,’s must
be specified. This is done by using two initial conditions.
However, one condition must always hold namely by the
antocovariance at time lag zero, given by

Yo = d, + dz (20)

Hence, only one initial condition remains to be specified, which
is done by requiring one moving-average parameter. A method
for calculation of 0, and ¢, that easily conform to multivariate
systems, is to express the autocovariance function implicitly
using (10) and (17) as, see Pandit [8],



Ve ™ Oy + &yY,, = Uink + eloicl-k’
0s<ks<t (21)

= {, k>1

Using (21) for k=1 and £=2, and that G, =0, - ¢, gives the
following second degree polynomial in 8,

k
B% - (_0_+¢]] B] +1 =0 (22)
kl
where
ko = ¥ 0) + &Y T) + §,v,(27)
(23}

o
n

1 = YLD + § v (0} + b, y(T)

In (23) it is required that y, = y(k7), and at the same time
used that v, = y_,. For each of the solutions of 6, in (22)
corresponds a variance ¢,’. This variance is determined by the
following expression

A
e1

g, = (24)

From (22} it is seen that there is in fact two covariance equiva-
lent ARMA(2,1) models possessing the same modal properties.

3. MULTIVARIATE MODEL - MDOF SYSTEM

Now consider an MDOF continuous-time linear system, Such
a systern can be modelled by an ARMAV model. In order to
make this model covariance equivalent, the same requirements
as for the ARMA model must be imposed on it. In this section
the procedure of the previous section will be generalized.
Consider a system with n degrees of freedom, described by an
n x n diagonal mass matrix m, an n x n symmetric damping
matrix ¢, and an r x n symmetric stiffness matrix k. It is
assumed that the system is excited in all degrees of freedom by
an independent distributed Gaussian white noise u#(f) with
covariance ¢,”. Denoting the # x I response vector by y(7), the
continuous-time state space description of this system is

X(t) = Ax(t) + Bu() (25)

where x(#) =[y(1), ()17, and

0 I
A= ., B =

-m 'k -mle

In (26) I is an n x n 1dentity matrix. The modal decomposition
of A is given by

A = MpM!
m, .. m,,
M = {27}
Hymyp o Wy myy

p = diag fpl. i=1,2,..2n

where p is a diagonal matrix of 2n distinct eigenvalues, M is a
matrix containing the corresponding eigenvectors. The m,’s are
scaled modeshapes. It is again the eigenvector and thereby the
scaled modeshapes that control the structure of A. The eigen-
values controls the values of the last n rows of 4.

Assuming zero initial conditions, the response y(¢) of (25) is

y(#) = fh-"(t-s)u(s)ds
0

T
2 m

. n ot o T4
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}

(28)
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where #'(¢-5) is the 7 x 1z impulse response function, the matrices
8., are modal weights, and 5, are the cotresponding scalar modal
masses, see Meirovitch [9]. Assuming stationary conditions the
n x n lagged covariance function of the response is given by

¥y (7) = fhv"(t)cih-"r(r +T)dt
Q

(29)
2n
- Z dfje LT
j=1
wnere the moaal weights d,, are defined as
n 2 T
- 8:9.8;
d;=-) === (30)

=t Mty

The resemblance between (8) and (29) 15 obvious. Turning to
discrete time, it will now be shown that in the multivariate case,
the ARMA(2,1) model expands to an ARMAV(2,1) model.
Denating Y, as y(k7), the ARMAV(2,1) model is defined as



Y! = ¢IYI-1 - ¢‘2Yz-2 + a, * Bla;u (31)

where ), ¢, are the # x n auto-regressive matrices, and 0, is an
n x n moving-average matrix. The n x J vector a, is an inde-
pendent distributed Gaussian white noise with zero-mean and
covariance matrix g;°, Representing (31) in discrete-time state
space yields

X: = ¢Xr—l + ea: (32)
where X, =[Y,, ¥,_\1", a,=[a,, a, |17, and
-¢, -d I e
¢ = 1 2 , e - 1 (33)
I 0 0 0
The modal decomposition of ¢ yields
¢ = LAL!
3"lll - A'ZM'IQII
L= (34)
L .. L,

A = diag [A) . i=1,2,...2n

where A is a diagonal matrix of 2 distinct eigenvalues. L is a
matrix containing the corresponding cigenvectors, and the I’s
are the scaled modeshapes. As for the continuous-time case, the
only task for the eigenvectors and thereby the scaled mode-
shapes are to control the structure of ¢. If the first n rows of ¢
were interchanged with the last n rows the structure of ¢ would
be similar to the structure of A, i.e. the auto-regressive matrices
would be in the n last rows and flipped in left and right direc-
tion. Because this is so, it can be verified that the scaled
modeshapes of ¢ and A are equivalent.

As in the scalar case it is possible at this stage w determine the
auto-regressive part of (31) on the basis of the continuous modal
matrix A, defined in (26). The calculations follow the scalar
case. Convert eigenvalues using the identity A = ¢*7. Calculate
¢ using a similarity transformation, keeping in mind that the
scaled modeshapes m; and I, are equivalent.

The lagged covariance matrix vy, of (31) can be expressed using
the n x n matrix Green's function G. At a given time step J, G;
is defined using 2n modal weights g, as

2" N
G, = gng{., jz0

(35)

= 0, ji<0

g, = LLIA + 8))

wnere L' is the ith row of the left 2 x p submatrix of 7. . By
using (35) the lagged covariance matrix can be defined in a
similar manner as in the scalar case as

(36)

On the basis of (35) and (36) it can be shown again that
covariance equivalence can be obtained using only one moving-
average matrix 0,. Following the approach in the scalar case for
calculation of 9, and g2, the multivariate equivalent to (21) is
given by

Yot OYey * d,Y, aiGTk + e]"iGJT—k’

0< k<1 (37)

]

0, k>1

which provides the following second degree matrix polynomial
in9,

6] - 8,k vk Ok + kkT = 0 (38)

where

ol
i

0 = Y0} + &y (T + b,y (27)
(39}

o~
]

1 =2 YLD + by (0) + b,y (TY

In (39) it is required that vy, = y (k7). Further it is used that
T . ..

Yi = Y., and that the lagged covariance matrix is real. The

solutions of 8, in (38) can be found using matrix polynomial

techniques. It can be shown that there exist K{(2n,n) solutions,

For each of these solutions correspond a covariance matrix a’,

which is determined by

o, = 0k, (40)



So again there are several covariance equivalent ARMAV
models possesing the same modal properties.

4. UNIVARIATE MODEL - MDOF SYSTEM

In both cases considered until now the number of channels have
been equal to the number of degrees of freedom. This approach
has provided the maximum modal information, i.e. eigen-
frequencies, damping and scaled modeshapes. In this section the
covariance equivalence between a univariate ARMA model and
a continuous-time multi-degree of freedom system, will be
considered. The limitations of this approach are, that only
eigenfrequencies and damping ratios can be determined.

If only one forcing function and output response for an MDOF
system are considered, then (28) can be written as

y(t) = fa Th¥(t-5)bu(s)ds (41)
+]

where y(f) and u(?#) are scalars, The n x I vector b 1s filled with
zeroes except at the element that corresponds to the forcing
function u(#). The »# x [ vector & is also filled with zeroes except
the element that corresponds to the output response y(#).
Laplace transforming (41) yields

¥(z) = H(z)U(z)

2

(42)

2n 20

YaTgh I (z-p)
j=1 k=Lk+j

n

(z-m)

where ¥(z) and U/(g) are the Laplace transformed of y(¢) and
u(t), respectively, and z is any complex number. The last
equation in (42) is in fact a scalar rational polynomial. The
order of the denominator polynomial is 2n, whereas the order of
the numerator polynomial is 2n-2. Applying the inverse Laplace
transform to this rational polynomial yields a differential
equation of 2r order of the following form

(D™ +a,, D™+ +a)y(1) =
(43)
(D¥ 2By, D e+ Byyu(r)

where D is a differential operator. The coefficients a; and §, can
be calculated explicitly from the last equation in (42). The
differential equation of (43) can be reduced to state space form
by defining the state vector x(¢) =[y(t) Dy(t) ... D¥ Iy(O)]7,

and excitation vector u{r)=[u(?) Du(t) ... D*2u(s) 077.
and

[0 1
0 0
A =
Ty T Ty
(44)
0 0
0 0
B =
B By o Byyp O

The resemblance with the SDOF state space formulation in (2)
should be noted. By following the procedure used for univariate
SDOF systems, the modal matrix A can easily be converted to
a discrete modal matrix ¢. This matrix will also be of the
dimension 2n x 2r, i.e. corresponds to an ARMA model with 2n
auto-regressive parareters.

The multivariate model (25) does not have derivatives of the
forcing function on the right-hand side. Looking at the uni-
variate model in (43), which is restricted to only one of the
elements of the multivariate vector, it is seen that it does have
derivatives of the forcing function on the right-hand side.
Because the basic model is of second order, it can be verified
that the derivative of the right-hand side never will exceed 2n-2.
Now, this result, of course, also holds for a univariate SDOF
system, i.e. for n=1. In section two, it was shown that the
covariance equivalent ARMA model of an SDOF systemn was an
ARMA(2,1). So, by extending this result, the covariance
equivalent model for an n-degrees of freedom univariate system
is evidently an ARMA(Z2n,2n-1).

The result is not restricted for multivariate to univariate models.
Consider an n/m-variate system with n degrees of freedom. The
covariance equivalent ARMAV model of such a system will
then be an ARMAV(2m,2m-1). As an ex-ample, consider a
system with two channels and four degrees of freedom. This
system can be modelled by an ARMAV(4,3) model.

6. IDENTIFICATION

In the previous sections it has been shown that it is possible to
model any linear second order continuous-time structural system
excited by Gaussian white noise using the ARMAY model, This
result is usefull by itself, because it provides a very fast and
easy simulation tool knowing m, ¢, &, ¢, and T. The result can
on the other hand also be used to model a discretely sampled
system. Consider a structural system without disturbance.
Knowing that the sampled system contains n degrees of freedom
in p channels the covariance equivalent ARMAYV model is an
ARMAV(2n/p,2n/p-1). In the case of disturbance, e.g. non-
white excitation of the structural system it may be necessary to



increase the order of the model. By doing so, the non-white
excitation is modelled as a part of the resulting model. The
actual physical system can then be extracted from the model
afterwards. This can be done using e.g. partial fraction expan-
sion.

A well-known method for identification of a structural system
is by applying the least square method to the ARMAV maodel.
Consider a p-variate ARMAV(n,m) and a p x N matrix of
samples y,. A least-square criterion for such a model is typical
of the following form, see Ljung [10]

V(0) = llfjef(em-'s(e)
N2r=1 t t

e(0) = y,-5,(0)

(45)

where V() is the loss function, and ¢, is the prediction error.
The p x p matrix A" weights together the relative importance of
the components of £. ¥,(0)is the predictor of the model,
defined as

7(8) = 70
0 = col(d,d,..4,,8,0,..6 ) (46)
b, = ¢l

where 0 is an (r+m)p® x | parameter vector obtained by
stacking all columns of the auto-regressive and moving-average
matrices on top of each other.

The (n+m)p’ x p regression matrix @, is obtained as the

Kronecker product between a p x p identity matrix I, and the
{n+m)p x I regression vector @, defined as

Yot

P, (47)

The parameters of the estimated model are the ones that
minimize the loss function V(8). In order to perform this
minimization a numerical search procedure like the Gauss-
Newron or the Levenberg-Marguardt is needed. In any case the
numerical minimization will be non-linear because the predic-
tion error €, depends on the estimated parameters. However, it
is also possible to use linear multi-stage search procedure, see
e.g. Piombo et al. [11].

7. CONCLUSION

In this paper the theoretical background for using covariance
equivalent ARMAV models as a discrete equivalent of the
linear second order continuous-time system, excited by
Gaussian white noise, has been discussed. The correspondence
between the number of channels of response, the number of
degrees of freedom in the system, and the order of the ARMAV
model has been shown. The results have shown that it is actually
possible to model a continuous-time system explicitly in
discrete time in a reasonable manner. It has also been consid-
ered how to identify structural system from sampled data using
a non-linear least-square criterion.
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