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ABSTRACT. The dynamic  analysis  of
Queensborough bridge data recorded by EDI Ltd,
based in Vancouver (Canada), under environmental
excitation, is a chance to involve a few different
research groups already working in this field.

Three different research units have employed
alternatives methodologies to investigate and analyse
the bridge data. With a complete agreement, they
decided to compare the results of these analysis
looking for a reliable common methodology. The aim
of the present paper is a sort of a resume of different
techniques, together with their advantages and
drawbacks, and a comparison of the results obtained
via these techniques in order to select the most
reliable aspects and to merge them for creating a
common strategy of approaching the bridge
monitoring matter. All this, seeking to define an
optimum standard methodology to be proposed to
those institutions and maintenance companies daily
operating in this field.

NOMENCLATURE

C, :Tnig condition on y

D :Random decrement signature
D(t, f) :Cohen distribution

f :Frequency

2(9,1) :Cohen transform kemel function
N :Number of trig points

R, :Cross correlation between x and y
R, ‘Time derivative of R,

t, :Discrete time point (trig point)

t ‘Time
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t' :Time dummy variable

' :residual at the ith DOF

:sample acquired at the ith DOF
x :Response time series

X :complex conjugate of X

y :Response time series

0 :Frequency dummy interval

S :shape parameter of kernel g(6,1)
T :Time segment

€ :Damping ratio

1. INTRODUCTION

The three proposed methods have different process
layouts. The Research Unit of Politecnico di Torino,
Department of Mechanics (T-MEC), proposes an
intrinsecally one-stage procedure in the time domain,
with a previous pre-processing by band-pass
filtering. The time-series of input data are elaborated
by a multidimensional regression leading to the
identification of modal parameters.

The Units of Aalborg University and Politecnico di
Torino, Dept. of Structural Engineering (T-
STRUC), propose two different two-stage
procedures. The first stage, in both cases, is a
transformation algorythm: a time domain transform
for the first case, a time-frequency distribution for
the second one. The second stage is the application
of a regression technique to detect the structural
response, of parametric (Aalborg) and non-
parametric type (T-STRUC).



2. COMBINING THE RDD AND THE ITD
TECHNIQUE

The idea of this approach is to combine the Random
Decrement (RDD) and the Ibrahim Time Domain
(ITD) Technique. This paragraph gives a short
description of this approach applied on the bridge data,
details are reported in [3]. The Random decrement
technique is a simple way of estimating short
sequences of data representing the physical propertics
of a system excited by random loads. A short sequence
of data produced by this technique is called a RDD
signature. Now, let (r). be the time series of the
responses measured on channels. For the time series
M) an estimate of the RDD signature is obtained by
simple averaging of the form:

. 1 N
Dij(f) = ?‘/_kz-:lyi (£ + T)lcj

where C; is some kind of trig condition applied to the
time series y,(t), t, are the trig points, i.e. the times
at which the trig condition is satisfied and N is the
number of trig points.

It might be shown that, for any trig condition, the
RDD signature is an unbiased estimate of a
combination of the cross covariance function R,(r)

and its derivative Rj(r) [1]. Thus, for white noise

excitation, the RDD signature is simply a free decay.
The initial conditions might not be known, but a set of
initial conditions does exist giving a free response of
which the RDD signature is an unbiased estimate.
Thus, for this case, the RDD signature represents the
true physics of the system.

In the case of general random loading, it is possible to
show that the RDD signature might be considered as
the free response of the true system interacting with a
pseudo-physical system describing the loading [2]. The
non-structural modes corresponding to the degrees of
freedom in the loading system does not change the
physical parameters of the structural system. Thus, the
structural system might be identified from the RDD
signatures even though the loading is not white noise.
The structural parameters are extracted using the
Ibrahim Time Domain technique [4]. Using this
technique, the RDD estimates are ordered in the
discrete time response matrices  x,(k) with the

elements x, (k) =D, ((k+s5)4r) where A is the

sampling time. Since all free decay responses are
linear combination of the modes it is possible to show
that

x;(k)=Ax,(k-1)

This equation 1s solved as an over determined systcm
of linear equations for determination of the square
matrix A using the least squares approach. The
eigenvalues and the eigenvectors of A provide the poles
and mode shapes of the system. Thus, for every full set
of RDD signatures, M estimates of the mode shapes
and poles are obtained. These results are averaged.
The number of degrees of freedom in the model is
controlled by the size of A .

Since the mode shapes, eigenfrequencies and damping
ratios are found by least square fitting on unbiased free
response  estimates, damping ratios and
cigenfrequencies estimated by this technique are
expected to be free of serious systematic errors, and
thus, the variance on the parameters might be used as
uncertainty measure.

Advantages

e Speed. Since the RDD estimates are obtained by
averaging, and since the ITD technique only
requires to solve a set of linear equations and to
solve an eigenvalue problem, the calculation time
is close to the smallest possible.

e Accuracy. Since no bias is introduced in the
estimation process, and since cross information is
used, the accuracy of the modal analysis must be
reasonable. However, since the modal analysis is
based on fitting the RDD estimates, and since the
RDD estimates cannot contain all information
hidden in the original time series, the technique
will not be as accurate as a technique based on
fitting a model to the raw time series (like ARMA
models).

e Amplitude dependency. The RDD estimates might
be obtained for a set of trig conditions
corresponding to different amplitude levels. Thus,
by estimating modal parameters for such a set of
RDD signatures, it is possible to investigate
amplitude dependency of the modal parameters
due to mass loading or non-linearities

Disadvantages

e Noise modes. Since the noise is not directly
modelled in the ITD technique, and since noise will
be present in the RDD signatures, a large number



of noise modes has to be estimated to obtain a
reasonably good fit. The noise modes must be
identified and discarded by estimating a large
number of different models for a given set of RDD
signatures using stabilisation diagrams and
judging the sensitivity of modal estimates.

3. SHARP BAND-PASS SELECTIVE
FILTERING OF EXPERIMENTAL DATA IN
THE TIME-FREQUENCY DOMAIN

Many investigations in the field of structural
identification  are  employing  time-frequency
representations (TFR) of linear type (Short Time
Fourier Transforms (STFT), Wavelets). The
application of bilinear (or quadratic) transforms allows
to ecliminate the time and frequency resolution
constraints posed by STFT's since, unlike the latter,
they are not based on signal segmentation. In
particular, Cohen class transforms make it possible to
obtain quadratic time-frequency distributions which
enjoy the properties of invariance relative to time and
frequency signal translations. These properties are of
essential importance to provide a correct physical
interpretation of the phenomena being investigated
[5,6]. It can be shown that all distributions which are
invariant to time and frequency translations can be
written in the form proposed by Cohen:
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where x(f) is the signal to be transformed, x*(f) is its
complex conjugate, g(6,7) is the kemel of the
transform. The indipendence of the kerel from time (f)
and frequency (f) variables entails the invariance to
translations which characterises Cohen class
transforms.

The bilinear structure leads to spurious terms
(interfering terms), due to cross-products between the
different components producing the signal to be
analysed, which are present in the final representation
alongside the useful terms. In the latest literature, this
shortcoming has been remedied by introducing
transforms that are able to filter the interfering terms
while useful terms are preserved. Choi and Williams
[7] pointed out that effective filtering of interfering
components can be obtained with an exponential type
kemel, as defined by the following law, pertaining to
the domain of the ambiguity function (8,1):
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The parameter o permits to choose kernel selectivity:
for small values (o<1), the g(6,t) function is highly

selective, whilst for higher values (c>1) its filtering
effect is lighter. Sequential energy variation leads to
estimate an equivalent viscous damping as a time
function. A constant time section can be likened to a
Power Spectral Density providing instantaneous
information on the power content of the different
components. Modal response is identified by
comparing the time histories obtained at several points
through IIR (very narrow band) filtering at each
frequency component [8]. Once filtered, the signals
coming in from the different measuring points, all of
them active simultaneously (single set-up), were
aligned with high resolution techniques . After the
alignment, phase data were extracted. The filtered
signals relating to the different channels were then
subjected to low-band filtering with 0.4 Hz cut off
frequency, in order to extract the vibration envelopes
of signals. The maximum amplitude of each envelope
was subdivided into 20 equal intervals. The envelope
curves were then subdivided into 20 segments
corresponding to such intervals.

After that, the mean amplitude within each interval
was correlated to the mean amplitude obtained over the
same time interval by the envelope of the data recorded
at reference point 9. This procedure results in plottings
describing the relative amplitude of modal vibration as
a function of the signal's energy level .

This relative amplitude was seen to be substantially
constant, provided that the energy level exceeded a
certain range of values, characterised by the
dominance of the background noise. The value of
relative amplitude, as determined over the significance
threshold, when associated point by point to the phase
data, which almost invariably stabilise around 0 or T,
makes it possible to plot the modal shape diagrams.
The proposed approach to structural identification has
some advantageous properties and some application
problems:

Advantages:

e high resolution capacity in natural frequency and
modal shape recognizing; e.g.,it is possible to
observe the very small relative difference between
east and west-edge modal shapes of the flexural
modes. Slight frequency changes, due to heavy



vehicle transits, are readable on time-frequency
distributions;

= robustness; it is possible to achieve the correct
shape even in a context of close modal
superposition (third and fourth mode). Moreover,
the wide scattering of phase and amplitude values
is a symptom of a different closely near mode;
besides, in Choi-Williams transforms, a close
modal coupling can be recognized due to the
different energy content ratio of coupled modes
along the time axis;

e wide information supply; available informations
are obtained about damping and signal to noise
ratio. Even, non-linearity can be revealed (it's not
our case) by a systematic deviation from constant
value of the amplitude ratios due to the frequency
peak-line sway with high energy levels.

Disadvantages

e The main application problems are connected to
the non-immediately visible criteria for a fully
automatic implementation of the method; besides
the non-linear identification procedure is not yet
defined and the identification of dampings is not,
until now reliable.

4. THE ARMAV APPROACH

The application of Auto Regressive Moving Average
Vector approach to the analysis of dynamic systems
results in a time domain method that allows to
compute the modal parameters of the structure [9].
The basic idea of this representation is that any
output sample can be written as a linear combination
of input and output values i.e.:

<[] = Za[k]x[n ~k] + ufn] + gb[k] u[n~ k]

where x[n] is the generic output sample and u[n] the
input,.

The previous equation describes a (p,q) ARMA
model and can be generalised into a vector form as
follows:

#{n]= ZA[k];[n k] + 7n] + ZB[k] Ty

with *[r]; a[n] eR* and Alk]; B[k] eR®s.

It is possible to demonstrate that, for a linear and
time invariant dynamic system, this general
ARMAV(p,q) model can be reduced to a (2,1)
model without any loss of generality. It is also
possible to link the ARMAYV poles with the natural
frequencies and the mode shapes of the continuous
time system thus simulated. It is worth saying that
this last passage doesn't require any kind of curve
fitting, neither in the time nor in the frequency
domain, but only some trivial algebraic
manipulations.

A great quality of this characterisation is the chance
to deal with the output produced by a random input
even if the input time histories are not but
statistically known. Yet there is a limitation,
regarding the stationarity of the input and output
time series. If the input is non stationary its
characteristics are not invariable and the ARMAV
model can't properly fit the data since its parameters
are constant.

Moreover it is important to notice that the system to
be modelled via the ARMAV approach must be
linear and time invariant and this is the assumption
we forced on the Queensborough Bridge. This is not
true strictly speaking because the bridge mass,
depending on the traffic conditions, is surely
changing and we don't know exactly the structure
characteristics to state whether it is linear or not.
The ARMAYV model is then to be considered correct
as far as the system under test is linear, time
invariant and excited by a stationary white noise.
Any relaxation of these requirement will result in a
partially incorrect analysis.

In the general formulation of the problem as stated
above, it should be noted that the input has to be
generated by uncorrelated random signals applied to
all the system DOFs. If just some of the DOFs are
excited the procedure could misbehave and this is
the reason why, in our analysis, we used the
modified algorithm presented in [9].

The practical application of the procedure to the
actual data measured on the Queensborough Bridge
proved quite satisfactory even if the requirement of
stationary data is not satisfied. This confirms the
robustness of the algorithm even if a wise usage is
necessary to achieve reasonable results [10].

Advantages:
* the input has to be known just statistically
o the system is treated as a black box



* 1o need to perform any curve fitting
¢ robust algorithm

Disadvantages:

* non stationary output data have to be handled
with care

* itis not possible to analyse non linear systems

5. COMPARATIVE EVALUATIONS

As it is observable from Fig. 1 and Table 1, the
modal frequency estimates are almost equal for the
three different approaches. The modal shape is
reconstructed with a comparable reliability for
uncoupled modes. The T-STRUC approach is
somehow weeker for coupled modes. The different
effectiveness in isolating coupled modes comes from
the fact that the Aalborg and T-MEC methods use
cross-correlated  informations from  different
channels, more efficient to that aim than the auto-
correlated ones adopted in T-STRUC model. On the
other hand, the time-frequency distribution has a
meaningful physical readability and can show slight
natural frequency changes due to heavy running
vehicles.

The modal damping is always critical to detect and
the effective reliability is not known. The Aalborg
approach uses full-time sample to calculate the data
correlations. Slight non-stationarity, e.g. due to
transient mass additions, could cause slow changes
in correlation function amplitudes, similar to the
effect of higher damping. Such effect, however,
depends on the maximum time delay in correlation
functions.

Also the T-MEC approach leads to the damping
coefficient estimate through the complex nature of
the eigenvalues. Damping could be more efficiently
evaluated because the ARMAV algorithm is applied
in short time windows, giving a better protection
against non stationarity, but only if the the sampling
ratio is well chosen and the signal-noise ratio is
good enough.

The T-STRUCT model allows the evaluation of the
damping factor through the free decay of filtered
time histories after transient loading. This method,
unlike the previous two, does not make any
hypothesis about the stationarity of structural
response, but a correct evaluation requires some
experimental records in conditions of low traffic, to

be sure that the decay after a transient event is free
from disturbances.
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Fig.1 Compared estimates of modal shapes
Tab. 1 Compared estimates of modal parameters
MODE | FREQUENCY [Hz} FREQ. VARIANCE DAMPING [%] DAMP. VARIANCE
T-Mecc | T-Struc | Aalborg T- T- Aalborg 1 T-Mecc T- | Aalborg | T- T- Aalborg
Mecc | Struc Struc Mecc | Struc
1F 1.12 | 1.10 1.10 2.13E-21 194 | (5) | 7.36 4.32E-2
2F 1,88 1.87 1.88 1.61E-2] 087 | 3.1 1.45 1.02E-2
3T 229 | 228 2,28 2.31E-21 049 1.86 2.36E-2
4 F 2.42 2.42 2.42 222E-21 0.84 2.13 2 48E-2
5T 320 | 3.20 3.20 1.50E-2¢ 0.78 151 1.80E-2
6T 343 | 345 3.44 1.69E-2 | 0.58 108 1.26E-2
7F 3.70 3.74 3.73 3.01E-2 14 1.58 1.60E-2
8T 5.15 5.16 515 1.84E-2 0.25 0.64 5.59E-2
SF 5.78 5.84 5.74 307E-2 0.96 1.15 6.48E-2
16T 7.04 7.12 7.01 2. 49E-2 0.63 077 449E-2
11T 7.52 7.52 7.33 1.92E-2 0.82 (3 69 4.40FE-2
12T 8.36 8.04 0.32




