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ABSTRACT. Modal parameter identification from ambient
responses due to a general unknown random inputs is inves-
tigated. Existing identification techniques which are based
on the assumptions of white noise and or stationary random
inputs are utilized even though the inputs conditions are not
satisfied. This is accomplished via adding, in cascade, a
force conversion system to the structure’s system under con-
sideration. The input to the force conversion system is white
noise and the output of which is the actual force(s) applied
to the structure. The white noise input(s) and the structure’s
responses are then used to identify the combined system.
Identification results are then sorted as either structural pa-
rameters or input force(s) characteristics.

NOMENCLATURE
Roman
c damping coefficient
f force
H transfer matrix or function
i index or /—1
j index
k stiffness
m mass
n white noise
s Laplace variable
t time
X response
Abbreviations
ARMA  Auto Regressive Moving Average
ARV Vector Auto Regressive (model)
ITD Ibrahim Time Domain
RDD Random Decrement
Subscripts
c combined system
f force system
s structure
Superscripts
T transpose
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Greek and Symbols

¢ damping factor

¢ mode shape

w circular frequency
< angle

1. INTRODUCTION

Modal parameter identification from ambient responses has
gained considerable attention in recent years’2. The lit-
erature reveals a multitude of cases of vibration testing
of bridges, buildings, off shore structures, aircrafts, space-
crafts, ground vehicles, among others, utilizing responses
due to wind, waves, traffic, road roughness, propulsion sys-
tems . .. etc. The advantages of such techniques are quite
evident: The normal operation of the structure under test is
not interrupted; no excitation cost; no measurements of in-
puts; continuous if not unlimited response records: suitable
for structural integrity monitoring.

However, identification from ambient responses possesses
two main disadvantages: first the input energy may be low to
excite the modes of interest; secondly the input is assumed
1o be white noise or stationary random.

The general identification theories as applied to modal pa-
rameters estimation of vibrating structures can be classified
into different main categories depending on the nature of the
loading. Usually the loads are assumed to fall into one of
the three following categories:

= Known and measurable force inputs time histories and
locations,

* no force inputs, (utilizing structure’s free response due to
initial excitation), and

= white noise inputs.

However, there exist many structural applications, as pointed
out earlier, where it is either impractical or uneconomical to
use, or satisfy the conditions of, the above mentioned inputs.
At the same time, these types of structures or applications
offer the readily available and economical ambient or oper-
ational responses,



Such applications have traditionally been analyzed imple-
menting identification techniques such as Frequency Re-
sponse Functions, ARMA models and Random Decrement
Techniques; among others. Such approaches, however, are
based on the classical assumption of white noise inputs; a
condition that is not usually satisfied.

In this paper, these techniques which require white noise
inputs will be extended to apply to cases of general force
inputs. This is accomplished by adding a pseudo second
order system, in series with the second order system rep-
resenting the structure, to which pseudo white noise inputs
are applied. The responses of the combined system loaded
by white noise are in reality the actual structure’s response
to the general force inputs.

Simulated and experimental results are presented in sup-
port of the proposed approach. The techniques imple-
mented here are applied to a full scale structure in another
publication®.

2. THEORY
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Figure 1. Block Diagram of Combined
Structure’s and Assumed Force’s Systems

As shown in Figure 1, the structure whose transfer function
is H,(s) has an input of f(s) and an output of r(s). The input
f{s) is not white noise. A pseudo second order system of a
transfer function H(s) is added in series to the system and
is assumed to have the dynamic characteristics such that if
the input to it is white naise, the output is the actual force to
the structure f{s). Now for the combined system in cascade
the input is white noise and the output is the actual structure’s
response. Even though systems in cascade have been
fully analyzed in dynamical systems theory®, the objective
of the ensuing proof is to address the identification aspect
of systems in cascade, particutarly vibrating systems, to
ensure that the modal parameters of the structural system
are independently preserved and can be uniquely identified.

The following equations relate the input to output for both the
structural systern and the force pseudo systemn

z(s) = H.(s)f(s) N

f(s) = Hy(s)n(s) 2
Thus the transfer function of the combined system becomes

He(s) = Hyls)H,(s) &
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utilizing partial functions, equation {7) becomes
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B=3"ba, (10)
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C=3"u (11)

D=3 (12)

Equation (8) verifies the stipulation that the modal parame-
ters of the structural system and the force pseudo system are
preserved and separable. The poles, in the denominator, are
unaffected by combining the two systems. Thus frequencies
and damping factors identification is expected to be correct.
As well, the residues in the partial fractions are simply mul-
fiplied by a constant for each mode. Thus the mode shapes
remain uniguely identifiable.

3. THEQRY VERIFICATION AND TESTING
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Figure 2. System for Simulation



To test the above theorems, a simulated test of a two degrees
of freedom system is performed. The system is shown in
Figure 2. Real experimental results are reported in another
publication®. For the simulated experiment a white noise
process is inputted to the force pseudo system which in this
case assumed to be a single degree of freedom second order
system the output of which is

1
F =
() wi —w? 4 2iswsw

(13)
The load to the “structure” under test is simulated using a
covariance equivalent ARMA model:

F(ti) = AR F(tio1) + AR F(ti2) + N(t:) + MA N (t;_1)

(14)
where N(t) is the white noise and AR, AR;, MA, are
functions of wy, {; and sampling rate AT. F(t:) is applied
equally to both degrees of freedom; thus Fi = 2 = F.
Figure 3 shows an example of the spectrum, time history
and normal probability plots for the white noise and the
output of the pseudo force system which is the input to the
structural system. The force pseudo system for these plots
has w, = 15.2578 and ¢{; = 0.005. These numbers are
merely for illustration. For structural simulation w; is taken
as the average of the two natural frequencies of the system

The structural system’s parameters were chosen as:
kl = k3 = 150, kz = 20

M = 1.0 Tty = 2.0 (15)

and the damping matrix was selected as nonproportional of

the form
- 0.1 01
C=10.02M +0.001 K + [0.1 0_1] {16)
Thus the system modal parameters were w, = 9.0947

/s wo = 13.1256 rfs and w; = 11.1101 r/s (average of
wy and we)}. For damping factors ¢1 = 0.0097, (2 = 0.0102
and ¢; = 0.005.

The theoretical mode shapes we calculated to be:

1 4.3597]7

o' = <¢' =0 2.7613)T
#* =1 0.1148]7

<¢®=[0 176.0168)7 (17

Figures 4 shows spectra and time histories for the outputs.

The random decrement technique®® “RDD” was used to con-
vert systems random responses into free decay responses
or correlation functions. Figure 5 shows the auto and cross
RDD signatures using mass 1 as the triggering measurement
and triggering was at every positive point. Figure 6 shows
RDD signatures for triggering at local extremum of mass 1
response.

Modal parameter identification was performed using ARV"®
and ITD® methods. Table 1 shows identification results using
signatures of Figure 5, and Table 2 is for those signatures
of Figure 6.

From identification resuits, it can be seen that the system's
characteristics as well as the force characteristics were iden-
tified.

Table 1. Modal Parameters estimated from RDD-Signatures (Every positive point
trig. condition) by ARV and ITD Methods, and % Error from Theoretical Values

Parameter Theory ARV % error iTD % error
Wy 9.0947 9.1085 0.1517 9.1075 0.1407
wo 12.1256 13.1306 0.0881 13.1089 0.1106
100.¢, 0.0097 0.0107 10.0810 0.0087 0.8711
100.¢4 0.0102 0.0132 29.4118 0.0107 5.2745
ih 1.0000 1.0000 — 1.0000 —
&3 4,3597 4.3536 0.1899 4.3609 0.0292
< &} 0.0000 0.0000 — 0.0000 —
< ) 2.7613 7.3072 164.60 6.4866 134.9111
&3 1.0000 1.0000 — 1.0000 —
&3 0.1148 0.1170 1.9164 0.1199 4.4774
< &f 0.0000 0.0000 — 0.0000 —
< &7 176.0168 62.2515 7.8204 165.7310 5.8436
ws 11.1101 11.0994 0.0963 11.1332 0.2079
(r 0.0050 0.0053 6.0000 0.0064 28.0000
Dy — 1.0000 — 1.0000 —
Dy —_ 1.1787 —_ 1.1347 —_
< Py — 0.0000 — 0.0000 —
< oy — 176.3223 — 175.4883 —




Table 2. Modal Parameters Estimated from RDD-Signatures (Local extremum
trig. condition) by ARV and ITD Methods, and % Error from Theoretical Vaiues

Parameter Theory ARV % error ITD % error
w 9.0947 9.0997 0.0550 9.1011 0.0706
wa 13.1256 13.1307 0.0389 13.10448 0.1585
¢ 0.0097 0.0083 14.9868 0.0082 15.8557
s 0.0102 0.0140 37.3725 0.0136 33.7445
i 1.0000 1.0000 — 1.0000 —
Y 4.3597 4.3118 0.3418 4.3518 0.1929
< ¢ 0.0000 0.0000 — 0.0000 —
< O} 27613 5.6025 102.8930 5.5074 99.4495
b2 1.0000 1.0000 — 1.0000 —_
it 0.1148 0.1183 3.0488 0.1229 7.0857
< 7 0.0000 0.0000 — 0.0000 —
< @ 176.0168 160.9737 8.5464 162.0385 7.9415
wy 11.1101 11.1078 0.0207 11.1099 0.0018
Cr 0.0050 0.0063 25.4600 0.6569 31.3800
& — 1.0000 — 1.0000 —
b — 1.1.684 -— 1.1659 —
< @y — 0.0000 — 0.0000 —
< Dy — 175.5213 — 175.1389 —

4. CONCLUSIONS

Ambient random responses treated with random decrement
and time domain identification techniques are effective and
economical in modal identification of structures. This ap-
proach, among others, is classically based on the assump-
tion of stationary random input. Non-stationary random in-
puts results in the identification of extraneous modal parame-
ters which belong to the forcing system rather than the struc-
ture being tested. However, it is shown that forcing function
dynamic characteristics have no effect on the accuracy of
structural parameter identification. Techniques need to be
developed to assist in sorting out structural dynamic proper-
ties from those of the inputs.
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Figure 3. Soectra, Time Histories and Distribution of White Noise and Input to Structure
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