ON THE UNCERTAINTY OF IDENTIFICATION OF
CIVIL ENGINEERING STRUCTURES
USING ARMA MODELS

P. Andersen, R. Brincker & P.H. Kirkegaard
Department of Building Technology and Structural Engineering
Aalborg University
Sohngaardsholmsvej 57, 9000 Aalborg, Denmark

ABSTRACT

In this paper the uncertainties of modal parameters
estimated using ARMA models for identification of civil
engineering structures are investigated. How to initialize
the predictor part of a Gauss-Newton optimization
algorithm is put in focus. A backward-forecasting
procedure for initialization of the predictor is proposed.
This procedure is compared with a standard prediction
error method optimization algorithm in a simulation
study. It is found that the uncertainties can be reduced
by a proper selection of the initial conditions for the

a fth Auto Regressive parameter

o} fth Moving Average parameter

n, Number of Auto Regressive parameters
n, Number of Moving Average parameters
t Starting time

N Number of samples

SNR Signal-to-noise ratio

cv Coefficient of variation

H] Expected value

i V-1

predictor.

NOMENCLATURE

{6}

Vector containing ARMA parameters

{®} Regression vector

{w} Gradient filter vector

{W} Available measurements vector
"\ Gradient of loss function

[H] Hessian matrix

y(t) Measured output

y() Predicted output

e(t) Zero-mean Gaussian white noise
w(t) Auxilliary sequence

e(t) Prediction error

u Mean value, bisection factor.

5 RMS measure

4 Damping ratio of the jth mode

A Natural eigen-frequency of the th mode
T Sampling period

"4 Loss function

q Forward shift operator

g’ Backward shift operator

A(q”')  Auto Regressive polynomial
C(q@') Moving Average polynomial

1. INTRODUCTION

For several years much research on identification of
linear civil engineering structures using an Auto Regres-
sive Moving Average (ARMA) model has been perfor-
med, see e.g. Pandit et al. [1]. Several authors have
shown that the ARMA model is able to give resonable
modal parameter estimates and prediction of the re-
sponse. However, it is often neglected that identification
using ARMA models is a statistical method which allows
not only the extraction of the modal parameters from a
given measured output; but also estimation of their
statistical errors as a measure of the uncertainty, see
e.g. Jensen et al. [2]. The quantification of the uncertain-
ties of the modal parameters is especially important if
they are used in the field of e.g. vibrational-based
inspection. In this case it is important to have an estima-
te of the uncertainties of the modal parameters, because
only significant changes of the modal parameters are of
interest, see e.g. Rytter [3], Brincker et al. [4] and
Brincker et al. [5]. It is well known that the uncertainties
of the modal parameter estimates are dependent upon
how the data have been sampled, i.e. the selection of
sampling period T, see e.g. D'Emilia et al. [6] and Yao et
al. [7]. Much research on the selection of an optimal
sampling period that minimizes the uncertainties of the



modal parameters has been performed, see e.g. Kirke-
gaard [8], Ljung [9], Lee et al. [10] and Yao et al. [7]. The
general assumption in these cases is that the estimator
has asymptotically unbiased and efficient statistical
properties, i.e. the estimator attains the Cramer-Rao
lower bound of variance. This assumption is only valid if
the amount of data is infinite.

This paper concerns the problem that occurs when
modal parameters are estimated using an ARMA model
with only a limited amount of data. Especially the initiali-
zation of the predictor part of the identification procedure
will be covered, because this can have significant effect
on the estimator propetties.

It will be shown how a proper initialization procedure can
reduce the uncertainties. Two different implementations
of a nonlinear least-square PEM (Prediction Error
Method) algorithm will be compared by a simulation
study. The algorithm used as reference is the MATLAB
[11] routine ARMAX.M which is based on the Gauss-
Newton optimization algorithm, see Ljung [12]. This
routine can also work without external input, i.e. be used
for ARMA models. The performance of this algorithm will
be compared with one based on a backward-forecasting
method which originally was developed for ARMAX
models, where the external input is unknown backwards
in time, see Knudsen [13]. This algorithm has proved to
work very well on ARMA models as well. in the following
the MATLAB routine will be referred to as MAT and the
backward-forecasting routine as BAC.

Sections 2 and 3 deal with the foundation of the ARMA
model and the PEM method while section 4 concerns
the backward-forecasting method. In section 5 an
example based on a simulation study is given.

2. ARMA MODEL

If an ARMA(2n,2n-1) model is used for a stationary
Gaussian white noise excited linear n-degree of freedom
system it can be shown that the covariance of the
response due to the ARMA model and that of the white
noise excited structure will be identical, see e.g. Kozin et
al. [14]. Given a measured response y(t) the
ARMA(n,,n,) model is defined as

y(t) + a, y(t-1) « ...

e(t) - ¢, e(t-1) « ...

+a, y(t-n,) -
(1)

+ Cp, e(t-n,)

where y(t) is obtained by filtering the Gaussian white
noise e(t) through the filter described by the Auto
Regressive polynomial, consisting of n, parameters a,

and the Moving Average polynomial, consisting of n,
parameters ¢, By introducing the following polynomials
in the backward shift operator g/, defined as g~/ y(t) =
y(t4)

A(g"y-1.a,q'+..+.a q"

(2)
c(g"y-1+c,q'+...c, g™

ne

eq.(1) can be written in a more compact form as

()
vit) - 2L et (3)

The roots of A(q ') are the poles of the model whereas
the roots of C(q ) are the zeroes. Assuming that the
model is stable the poles are in complex conjugated
pairs. The relationship between the poles p, and the
modal parameters is given by

b - eznf,r(-c,.i‘h -§) j-1..n, (4)

where £ and ¢ are the natural eigen-frequency and
damping ratio of the th mode. T is the sampling period.
It is seen that each complex conjugated pair of poles
corresponds to a simple-damped oscillator, see Safak
[15].

Setting 4 = In( p;) the modal parameters are obtained
from the following equations

~ -Re(N)
anT ' G° Al ®)

where |l denotes the modulus and Re the real part of the
complex number A.

3. OPTIMIZATION PROCEDURE

The parameters of the ARMA model are estimated by
minimizing a quadratic error function V also denoted the
loss function. Introducing the vector {6} consisting of the
ARMA parameters

©} - {a,, ..

a,,Cyy - Cp ) (6)



V(6) is defined as

N

1 1
v(e) - — t,8)?
© 2N-t.1 1,21'8( )
(7}
A S - se)y
TN & T

where &(t,6) is the prediction error, y(t,6) is the predicted
response and £, = max(n,,n,+1. The optimal one-step
predictor is given by Ljung [9]

7(t,8) - {0}’ {8} (8)

where {¢} is defined as

{0} - {-y(t-1),...-y(t-n,) e(t-1),....e(t-n )} (9)

Eq. (8) can be obtained from eq. (3) and (6) by adding
the noise term. To calculate the right-hand side of eq.
(8) measurements of y(t) from time t1 and back to the
infinite past are necessary. In this case, i.e. the statio-
nary case, &(t,6) equals the Gaussian white noise e(t)
and the predictor is really optimal in the least square
sense. To calculate a parameter estimate a numerical
minimization method must be chosen. The method
which will be used is based on the Gauss-Newton
algorithm, defined as

6.1 - {8 - HIH(BII'{V(B,)} (10)
where p is a bisection factor and k is the iteration

number. The Hessian matrix [H(6,)] and gradient of the
loss function {V(6,)} are defined as

) 1 N
VO - - t.z,_ W(t.8,0}5(t,8,)
) (11)
[H®)] - - N: - 2 W (EBHu (8
st botat,

and the regression filter {y(t,8,)} as

{w(t.8,)} -

1
—{p(t,8
Cla oy PO (12)

The main difference between the two routines is the
procedure for initialization of &(t,6) for t=t-1 to t-n_. in
eqg. (9). The MAT routine uses a direct start procedure
and sets these missing values to zero, i.e. the direct
start can be interpreted as the unconditional expectation
for these missing values. The BAC routine, on the other
hand, uses a conditional expectation for these missing
noise values, see Knudsen [13]. This problem concer-
ning initialization of the predictor has been recognised
for many years, see Ljung [18]. Especially, a system with
a high order C(q) polynomial having weakly damped
zeroes close to 1 will give a transient, see e.g. Box et al.
[16], Saric et al. [17] and Knudsen [13]. This behaviour
will introduce bias and increase the uncertainties of the
modal parameters.

To ensure global convergence a good initial estimate of
{®} must be provided. Both algorithms use the same
procedure for establishing the initial estimate. First a
high-order AR model is applied to the response (). The
prediction error &() of this model is used as external
input in an ARX model. The estimated parameters of
this model will then be the initial estimate,see Ljung [9]
and Ljung [12]. In Ljung [9] it is shown that this will lead
to global convergence for the ARMA model optimization
procedure.

4. BACKWARD-FORECASTING

In the BAC routine the calculation of the missing initial
noise values of the predictor is based on the following
conditional expectation

El{e(t;-1),....e(t;-n)}{W}] -

(13)
{e,(t,-1),....e(t,-n,)}

given available measurements {W}. Using this conditio-
nal expectation, the transient will disappear, see Knud-
sen [13]. The index cis used to distinguish this conditio-
nal expectation from the one step predictor. To calculate
the conditional expectation given by eq. (13) an auxiliary
sequence w(t) is introduced

w(t) - A(g7)y(t) (14)

This sequence can be calculated for t =t, to N. Combi-
ning eq. (3) with eq. (14) it follows that wt) is an MA(n,)
process with the forward mode! defined as

w(t) - C(q)e(t) (15)



and the backward model defined as

w(t) - C(q)e®(t) (16)

where the superscript b stands for backwards. Notice
that e(t) and €°(1) are two different white noise sequen-
ces. Also notice that C(q) is now a polynomial in the
forward shift operator g, defined as g’ y(t) = y(t+)-

The development of the backward-forecasting method
is based on eq. (15) and (16), and therefore it is suffici-
ent to define the available measurements as the known
part of w(t), i.e.

W - {w(t,),....w(N)} (17)

Taking conditional expectation on both sides of eq. (16)
yields

w,(t) - C(q)es (1) (18)

It follows from eq. (17) that w(t) = w(t), for t = {,; to N.
Thus e/(t) can be calculated backwards for t=Nto t by

Bty - — 1w, (t
e. (1) C(q)W°() (19)

Starting this filter from t=N requires the initial conditions
{ e2(N+1), ... , 2(N+n;) }. These are set to zero and the
resulting transient is assumed to have faded out before
t is reached. Because e (t) is a zero-mean Gaussian
white noise the conditional expected value E[e.”(t{W}]
is equal to zero, i.e. e’(t) = 0 for t < t. Using this and eq.
(18) it is now possible to predict wrl(t)fort<t,.

Taking the conditional expectation on both sides of eq.
(15) and seperating e.(1), yields

1
u(f) - — (D)
c(a) 20

Because w,(t)= 0 for t < t-n, it follows from eq. (20) that
e (t) = 0 for t < t,-n,. Inserting w,(t) for t = {-n.to 11 eq.
(20) the initial conditions { e (t;-), ..., e,(t;-n;) } can be
calculated. Using these initial conditions it is straightfor-
ward to calculate the loss function V in eq. (7) for a
specified value of {0} .

In Knudsen [13] it is shown that the Initial vaiues of the
regression filter in eq. (12), for t = t-n, to {1 can be

obtained as

de,(t)

Wy - - o

(21)

These initial values can be calculated by differentiating
eq. (14) - (16) and eq. (18) - (20) with respect to {ey,
see Knudsen [13].

5. EXAMPLE

The significance of different initialization procedures is
highly dependent upon the chosen model order. A first
order ARMA model will not show any particular differen-
ces, see Knudsen [15]. In this section an ARMA(1 0,9)
model will be used. This model is the covariance equiva-
lent to a linear 5-degree of freedom uncoupled system
excited by a Gaussian white noise. The natural eigenfre-
quencies f,and the corresponding damping ratios ¢ are
seen in table 1. In table 2 the parameters of the corre-
sponding ARMA model are listed. In fig. 1 the poles and
zeroes of the ARMA model are plotted. The zeroes are
seen to be close to the complex unit circle indicating that
a large transient can be expected. The system has been
simulated using a sampling frequency equal to 75 Hz.

The example consists of four runs. In table 2 the number
of simulations N, and the amount of data N of each run
are shown. In the table the signal-to-noise ratio SNR of
each run is also shown. The SNR is defined as the ratio
between the standard deviation of the simulated respon-
se and the added Gaussian white noise.

For comparison, two RMS measures {B} and {B},
defined as

N
Y (f; - )2

-1

1
{BJ=\~AT_

=~

(22)

N,

Y (@, - @Y

i1

{Bq} =

1
NN

are introduced. {B} and {B;} are the AMS-values of the
differences between estimated and model values of the
natural eigen-frequencies and damping ratios respecti-
vely.

The standard deviation of the prediction error for runs 1
and 4 is shown in figs. 1 and 2 at each time step as
examples. It should be noted how the standard devia-



tions in the transient parts are reduced using the BAC
routine. In tables 4 to 7 the mean value, the coefficient
of variation and the RMS of the estimated modal para-
meters are listed. It is seen that in every run the results
obtained from using the BAC routine regarding the
natural eigen-frequencies are superior to the results
obtained from the MAT routine. The results regarding
the damping ratios are on the other hand not so good for
either of the routines.

6. CONCLUSION

In this paper it is shown that the uncertainties and the
bias of the modal parameters, applying an ARMA model
to a small amount of data, can be reduced by a proper
initialization of the predictor part of the optimization
algorithm. One way of making this reduction is using a
backward-forecasting procedure to predict the un-known
initial values. The results have been verified by a simula-
tion study comparing an ordinary optimization algorithm
with one using the backward-forecasting approach.
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Mode f. [Hz] & [%]
1 2 0.1
2 4 0.5
3 8 0.1
4 16 5
5 32 10
Table 1. The modal parameters of the

linear structural system.

Alg") cq) |

1 -4.493 -3.239
2 8.581 4,599
3 -8.584 -3.601
4 3.808 1.656
5 1.085 -0.547
6 -2.010 0.326
r -0.368 -0.039
8 2.311 -0.316
g -1.832 0.231
10 0.509

Table 2. The ARMA model that corresponds

to the linear system.

Run SNR % N Ny,
1 5 200 500
2 20 200 500
3 5 1000 250
4 20 1000 250

Table 3. The four simulation runs dependence on

SNR, Nand N,

MAT BAC
| o [ev] g || »w {cov &

, fj 2.06 0.053 0122 2.05 Q0.052 Q.120

{ f, 391 | 01400 | 0400 391 | o087 | 0382

f, J 804 | 0041 | 0328 804 | 0038 | 0.306

f4 I 16.55 0.115 1.974 16.31 0.109 1.800

f. 3155 | 0083 | 2es6|] 3112 | 0095 | 3080

6’1 0.052 0.957 0.071 0.056 1.010 0.079

Q Q108 1.132 0.160 0.112 1.270 0.180

Z, 0.030 | 2545 | oos3ff ocoss | 2750 | 0185

Q 0.114 1.165 0.148 0.109 1.270 0.151

Z o041 | 1690 | oootfl oos1 | 1267 | oom
Table 4. Results of run 1. Mean value y, coefficient of
variation CV and AMS measure [ of the modal

parameters f and .
MAT BAC
y cv 8 y cv I

f, 205 | oos2 | o.20 205 | 0048 | 0110

f2 3.80 0.117 0.483 3.91 0.087 0.387

fa 8.07 0.057 0.464 8.05 0.058 0.467

f, 1727 | o128 | 2492 1s88 | 0125 | 2295

1. 3095 | 0099 | 3228) so0s0 | ocoss | 3.178

e 0.069 | 1011 | ooe7| 0087 | 1033 | 0096

4’2 0187 1.117 0.215 0.156 1.061 0.223

{3 0.050 2.066 0.113 0.060 2.541 0.162

Z 0415 | 1392 ] oi71fl o131 | 1273 | o186
4; 0.040 1.427 0.083 0.045 1.428 0.084 ‘
Table 5. Results of run 2. Mean value y, coefficient of

variation CV and RMS measure 3 of the modal
parameters f, and .
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MAT | BAC l ‘ e TR
os e .
g lov ]| g p {lcov] s e S %
"“',f .
f, 2.03 0.033 | 0075 2,01 0.018 | 0.037 u.z':' ’&E
ol -
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£.8 o / 3
|
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-1 06 o 05 1
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Fig 1. Poles (x) and zeroes (o} of system.
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Table 6. Results of run 3. Mean value u, coefficient of o an b : o ;
variation CV and RMS measure £ of the modal
parameters f, and g, .
o |
MAT BAC '
u [o]% A U cV 2 -
1 [P (I
f, 205 | 0044 | 0.104 204 | 0038 | 0084 T oo |
f, 410 | ooss | oszse 408 | 0051 | o222 Fig 2. Staanard d_ew'ation of prediction error using
the simulations of Run 1.
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5 ‘ i i i i
f. 31.29 0.106 3524 30.58 0.097 3.095
g wMWM%WmM&:m}MW%
Z 0057 | 1174 | oossfl oos7 | 1183 | ows7 LI 1
A 0151 | 1478 | o2s8f| 0059 | 1583 | o0.105 Tl *%r;ﬂ - ’”'J;. o ﬂ------f; ;14
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Table 7. Results of run 4. Mean value u, coefficient of 5 i |
& i |

I
.
variation CV and RMS measure 3 of the modal ol |

parameters f, and ¢,

P

i [ ]

Fig 3.  Standard deviation of prediction error using
the simulations of Run 4.



