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Abstract

The Random Decrement (RDD) Technique is a ver-
satile technique for characterization of random sig-
nals in the time domain. In this paper a short re-
view of the theoretical basis is given, and the tech-
nique is illustrated by estimating auto-correlation
functions and cross-correlation functions on modal
responses simulated by two SDOF ARMA mod-
els loaded by the same bandlimited white noise.
The speed and the accuracy of the RDD technique
is compared to the Fast Fourier Transform (FFT)
technique. The RDD technique does not involve
multiplications, but only additions. Therefore, the
technique is very fast - in some case up to 100
times faster that the FFT technique. Another im-
portant advantage is that if the RDD technique is
implemented correctly, the correlation function es-
timates are unbiased. Compariscn with exact so-
lutions for the correlation functions show that the
RDD auto-correlation estimates suffer from smaller
estimation errors than the corresponding FFT es-
timates. However, in the case of estimating cross-
correlations functions for stochastic processes with
low mutual correlation, the FFT technique might
be more accurate.

Nomenclature

t, T : time
t, 7,m . subscripts
X (t) : stochastic process
z(t) : continous time series
T, : sampled time series
Dxvy(r) : RDD signature
Dxy(7) : RDD estimate

0% : variance on X (1)
Rxy(T) : correlation function
Rxy(7) : correlation function estimate
N : number of trig points
M : number of points in estimate
At : sampling interval
o#, : window variance
ai, . variance on X (1)
w; : natural frequency
T; : natural period
(; : damping ratio

$, 0 : ARMA parameters

e : estimation error

1. Introduction

The Random Dec Technique was developped at NASA in
the late sixties and early seventies by Henry Cole and co-
workers [1-4]. The purpose was to develop a simple and fast
data analysis algorithm for the characterization of stocha-
sic response of space stuctures and aeroelastic systems and
to 1dentify damage in such systems by identifying system
changes. Since then, the technmque has been used for many
purposes, ranging from system 1dentification of large struc-
tures, Ibrahim [5] and structural damage detection to de-
termination of fluid damping, Yang, [6-8], vehicle system
1dentification and damping measurements of soil [9-10].

The basic 1dea of the technique is to estimate a co-called
Random Dec signature which can be used to characterize
stochastic time series. If the time series z(%), y(t) are given,
then the Random Dec signature estimate f)xy(*r) is formed
by averaging N segments of the time series x(¢)
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where the time series y(t) at the times #; satisfies the trig
condition Cy,), and N is the number of trig points. The
condition might be that y(¢;) = a (the level crossing con-
dition), or that y(¢;) = 0 A y(¢;) > 0 (the zero crossing
condition with positive slope) or some similar condition.
The algotrithm is illustrted is figure 1. In eq. (1) a cross
signature is estimated since the accumulated average cal-
culation and the trig condition are applied to two different
time series. If instead the trig condition is applied to the

same time series as the data segments are taken from, an
auto signature is estimated.

The advantage of the technique is that is establishes a basis
for simple and fast on-line system identification. Because of
the simple algorithm it can be programmed in any language
using only a few programming lines. It involves only ad-
ditions, not multiplications like the FFT technique, there-
fore having the potential of being fast. Moreover it works
directly in the time domain, which is often an advantage
when identifying system changes, especially when changes
in damping ratios are of importance.

However, one of the problems of the technique is that the
theoretical basis is still being disputed. In all the refer-
ences mentioned above, the authors argue on a more or less
heuristic basis that the Random Dec signature formed by
averaging time series segments from the output of a stocha-
sic loaded system should describe system proporties only.
This was shown to be incorrect by Vandiver et al, [11], who
proved that under certain conditions (applying the level
crossing trig condition to a Gaussian process) the Random
Dec signature is simply proportional to the auto-correlation
function. Vandiver’s proof is simple and convincing directly
involving the Gaussian distribution and the derivation of
closed form solutions for the variance on the estimate. How-
ever, the general propblem of the interpretation of RDD
cross signatures, and the practical problems arising from
applying the trig conditions on sampled time series was not
addressed. In practise the trig condition most be formu-
lated by use of a finite size window (se next section). The
choice of window is essential for the succesful use of the
RDD technmique on sampled time series, since the finite size
windows will introduce additional variance and sometimes

also bias the estimate, Brincker et al [14], [15].

In Brincker et al [15] the results of Vandiver are generalized
to the case of cross signatures, and general trig conditions.
Furthermore in [15] some relations are given for general pro-
cesses and general trig conditions, and solutions for variance
and bias introduced by finite size trig windows are derived.
In the following some of these results are shortly summa-
rized and the potential of the technique is illustrated by

application of the level trig conditions on simulated time
series.
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Figure 1. The Random Decrement technique.
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Figure 2. Modal responses X;(t) determined by loading
SDOF systems by white noise.

2. Theoretical Basis

The investigations in this paper will be restricted to the
level trig condition. For this condition the mathematical
definition of the RDD signature reads

Dxx(r) = E[X(t+7)] X(t)=d] (2)

where X (1) is a stationary stochastic process and a is the
trig level. Vandiver et al. [11] shoved that if X(¢) is a sta-
tionary Gaussian process, then the RDD signature Dx x(7)
and the auto-correlation function Ry x(7) are related by

Dxx(t) = RA;;{(T){I (3)

where 0% is the variance of the process X(t). In this case,
therefore, the function given by eq. (1) is simply an esti-
mate of the auto-correlation function Ry yv(7).



In Brincker et al [15] it is shown that the corresponding
formulas for the general case of two stationary Gaussian
processes X (1), Y(t) are

|

Dxy(r) = E[X(t+7)| Y(t) = d

R.X'Y(T)a (4)

o

For a sampled finite time series however, the event y(¢) = a
has the probability zero, and therefore as mentioned above,
the condition must be modified by introduction of a finite
size window. A finite size horizontal window is introduced
by the condition

Cy}{ X (yi<a/\y;+1 :>a)\/(y,*>a/\y;+1§a) (5)

valid for sampled data with and without quantization er-
rors. To prevent bias, the trig point 1s placed in the midle
of the window by averaging two ajacent segments, Brincker

et al [15]

(6)

where At 1s the sampling interval. Asuming the data seg-
ments to be independent, the variance of the estimate can
be estimated by

VarlDav(r)] = 5% (1= (B Dy o2, (0

where o, is the variance introduced by the finite size win-
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2
W = T v a?, ) (8)
and where 0‘%, is the variance of the derivative proces Y (¢).

3. ARMA model simulation

A set of modal responses X;(¢) are created by loading SDOF
systems with natural frequencies w; and damping ratios (;
by the same stationary Gaussian white noise Q(t), se fig-
ure 2. For this case the analytical solutions for the cross-

correlation functions are given by, Madsen et al [16], (sec.
3.3)

Rx;x;(7) = wSi(aijgi(r) + Bijhi(T)); 720  (9)

where 5; 1s the white noise spectral density, ¢g;(7) is the

free decay for a unit displacement. and A;(7) is the impulse
response function

2
5i = ;JE{;CW?
Ciwi .
g;(1) = exp(—(iw;T) (cos(wdi7)+ — sm(wd,-'r))
di
hi(t) = ! exp(—Ciw;T) sin(wg; T)
Wi

(10)

and where the factors «;; and §;; are given by

4(widi +w;Gj)
(wf — w?)? + dwiwj(wilj + w; G ) wiCi +w; ;)
2(wi — w?)
(Wi —wi)? + dwiw;(wi(; + w;G)wii +wid;)
(11)
For 7 < 0 the indicis 7 and j are interchanged in eq. (9).
Note the symmetry relations a;; = aj; and §i; = —B;i.
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The system responses were simulated using a (2,1) ARMA
model given by

Tm = PrTm_1 + (1’237111—2 T Gy — eam—-—l (12)

where $1, $5 are the Auto Regressive (AR) parameters, ©
is the Moving Average (MA) parameter and a,, is a time
series of independent Gaussian distributed numbers. The

model i1s denoted (2, 1) since 1t has 2 AR parameters and
1 MA parameter. If the ARMA parameters are chosen as

®; = 2exp(—u)cos(v) (13.a)
&, = exp(—2u) (13.5)
© = —P+VP2-1; |0|<1 (13.¢)
where
b _ wg; sinh(2u) — (w; sin(2v)

2(;w; sin(v) cosh(u) — 2wy; sinh(u) cos(v)

u = (;w; Al and v = wy;At, then the ARMA model given by
eq. {12) is the representation of the continuous system in
the discrete time space. It can be shown, Pandit [18], that
the discrete auto-correlation function of the time series z,,
given by eq. (12) is equal to the sampled auto-correlation
function of the corresponding continuous process.

The simulations were performed using the PC version of the
MATLAB software package, [17], except the algorithm for
estimation of the RDD signatures which was programmed
in the C programming language and linked to the MATLAB
software by the MATLADB user function interface. When
cross-correlation functions were estimated from two system

responses, the sampling interval At was taken as one tenth
of the shortest natural period of the systems.



4. Typical RDD results

A typical result for estimation of cross correlation functions
by the Random Decrement technique is shown in figure 3.
T'wo responses z;(t) and z,(t) were simulated, using the
system parameters 11 = 27 /wy =15, Ty = 2n/w, = 2 s,
and (; = (2 = 0.05. The cross-correlation estimate R X, X,
was determined using the trig level a = ox, and time series

of 100.000 data points, corresponding to approximately 3
hour records.

Figure 4 shows the corresponding auto-correlation estimate
Rx,x,. The estimate was obtained by estimating a set
of RDD estimates ffi—lxl, k= 1,2,..100 from time series
of 1000 data points each. From this set of estimates the
mean and the empirical variance was calculated. Figure
4 show the mean of the RDD estimates and the standard
deviation on Rirlxli The theoretical variance was deter-
mined from eq. (7) and (8) using the Gaussian proporties
ox, =R v (0) = wfag{l. As it appears from the results,
the level of uncertainty is well predicted by the theoretical
solution. The oscilations in the uncertainty predicted by
eq. (7) and (8) however, does not appear in the empirical
results. This discrepancy is due to the strong correlation
between data segments.

The high efficiency of the RDD technique is illustrated by
comparing estimation times with the Fast Fourier Trans-
form (FFT) technique, Brigham [12]. Auto-correlation func-
tion estimates were obtained from time series of 4000 points.
FF'T estimates were obtained in the following way. First,
the 4000 points were divided into segments of 2M points
each. Then the segments were FFT’ed, multiplied by their
complex conjugate, the results were averaged and the re-
sulting power spectrum was then transformed back to the
time domain by inverse FFT. A radix-2 FFT algorithm was
used in all cases. No spectral windows was used.

Figure 5 shows the CPU-times as a function of the length of
estimated auto-correlation function. There are two curves
tor the RDD algorithm, one from an earlier investigation,
Brincker et al [14], where a floating point implementation
was used, and one from a new integer implementation of the
RDD algorithm, both corresponding to a trig level af @ =
1.oox. Comparing the CPU results for the FFT algorithm
and the integer implementation of the RDD algorithm show
that for short estimates the RDD algorithm is orders of
magnitude faster than the FFT algorithm. For M = 16 the
CPU-time for the RDD estimates were about a factor 120
shorter than for the FFT estimates, and the corresponding
factor for M = 32 was found to about 50. However, since
reliable estimates for the damping and the natural frquency
might be found from short unbiased correlation function
estimates, se figure 3 and 4, the RDD technique has a great
potential in all cases where speed is essential, for instance
in the case of on line system identification.
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Figure 3. Random Decrement estimate (”0”) of cross
correlation function, T) /T, = 2, ¢ = 0.05, compared to
analytical solution (”-”)
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figure 4. Estimation of auto correlation function. A:
comparization between Random Decrement estimate (70”)
and ezact solution (7-”) and B: between theoretical (- ”)

and empirical (”*”) standard deviation.
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Figure 5. Comparization of CPU times for Fast Fourier
Transform and Random Decrement on a {ime series of
4000 data pornis.

5. Accuracy of RDD estimates

In this section the accuracy of the Random Decrement tecl.-
nique 1s compared to traditional FFT estimation, the ¥FT
technique being applied as described in the preceeding sec-
tion. Time series z(t) and z,(¢) of 4000 data points were
simulated and cross-correlation functions Ry, x, were esti-
matcd, the RDD technique using the trig level a = 1.50%,.

The influence of the lenght of the correlation function es-
tlimnates on the estimation error has already been reported,
Brincker et al [14]. Therefore, only the influence of the
damping ratio and the system difference (T2 — T1)/T} on
the estimation error is investigated here. When the system
difference is zero it corresponds to the case of estimating
auto-correlation functions. The estimation error € is de-
fined as

or
E = , oY
mﬂT(RJﬁH:(T))
1 S
ot = 2M -1 Z (Rﬁrl:‘fz(m&ﬂ _ Rxl X2 [m&t))z

m=—M

(14)

describing the average error per point in relation to the
maximum value of the correlation function.

The FET estimation errors for M = 16 and Af = 128 are
shown 1n figure 6. As it appears from these resulis, the
error for long estimates does not seem to be sensitive to
the correlation between the time series, only in the case
of low damping ({ = 0.01) there is a significant increse in
estimation error for increasing system difference. In the
case of short estimates there 1s a significant denpendency
for both small and medium damping (¢ = 0.01,{ = 0.03).
The oscilatory behaviour of the results in figure 6.A is not
valid in general, but is governed by the degree of fulfillment
of the assumption of periodicity of the correlation function
changing more or less arbitrarely with the system difference
parameter (73 — T3 }/T; (note that the sampling deriod At
is taken as the smallest of the natural periods - therefore
the sampling period 1s changing with the systemn difference
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parameter, and so is the degree of fulfillment of the assump-
tion of periodicity of the correlation function).

The corresponding results for the RDD estimates are given
in figure 7. As it appears from these results, the dependency
of the system difference parameter is significant for small
and medium damping (¢ = 0.01,{ = 0.05), and is about the
same for short and long estimates. The errors on the RDD
estimates are substantially smaller than the FFT errors for
small system differences, but there is a significant increase
in the estimation error with increasing system difference,
and for a system difference of (T — T1)/T} = 1 the FFT
technique is superior. It is natural to expect an increase in
the estimation error for increasing system difference. When
the system difference increases, the correlation between the
time series decrease, the values of the correlation function
becomes smaller, and therefore the relative error increases.

Conclusions

TI'he Random Decrement technique is a versatile very simple
non parametric technique for estimation of auto correlation
functions as well as cross-correlation functions.

The technique is simple to implement. If a few simple rules
are respected, estimates obatined by the Random Decre-
ment technique will be unbiased, allso in the case of low
damping and short estimates.

The technique is very fast. If the estimates are short, the
estumation algorithm might be more than 100 times faster
than Fast Fourier Transform algorithm.

The Random Decrement technique provides an accurate
way of estimating auto-correlation functions and cross cor-
relation functions. Especially in the case of low damping
and short estimates, the FFT estimates becomes heavily
biased, and the RRD technique is superior. However, in
the case of estimating cross correlation functions, when the
correlation between time series is small, random errors be-
come large in relation to the estimated correlation func-
tions, and therefore, it might be more accurate to estimate
cross-correlation functions by the FFT technique.
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